全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cosmic Time Transformations in Cosmological Relativity

DOI: 10.4236/jhepgc.2016.22022, PP. 253-279

Keywords: Flat Space, Cosmic Time, Time Dilation, Dark Matter

Full-Text   Cite this paper   Add to My Lib

Abstract:

The relativity of cosmic time is developed within the framework of Cosmological Relativity in five dimensions of space, time and velocity. A general linearized metric element is defined to have the form \"\" , where the coordinates are time \"\", radial distance \"\" for spatials x, y and z, and velocity v, with c the speed of light in vacuum and t the Hubble-Carmeli time constant. The metric is accurate to first order in \"\" and v/c?. The fields \"\" and \"\" are general functions of the coordinates. By showing that \"\" =\"\", a metric of the form \"\" is obtained from the general metric, implying that the universe is flat. For cosmological redshift z, the luminosity distance relation \"\" is used to fit combined distance moduli from Type 1a supernovae up to z<1.5?and Gamma-Ray Bursts up to z<7, from which a value of \"\" is obtained for the matter density parameter at the present epoch. Assuming a baryon density of \"\", a rest mass energy of (9.79+ 0.47) GeV?is predicted for the anti-baryonic \"\" and \"\" the particles which decay from a hypothetical

References

[1]  Hawkins, M.R.S. (2010) On Time Dilation in Quasar Light Curves. Monthly Notices of the Royal Astronomical Society, 405, 1940-1946. http://dx.doi.org/10.1111/j.1365-2966.2010.16581.x
[2]  Goldhaber, G., Groom, D.E., Kim, A., Aldering, G., Astier, P., Conley, A., et al. (2001) Timescale Stretch Parameterization of Type Ia Supernova B-Band Light Curves. The Astrophysical Journal, 558, 359-368. http://arxiv.org/abs/astro-ph/0104382 http://dx.doi.org/10.1086/322460
[3]  Blondin, S., Davis, T.M., Krisciunas, K., Schmidt, B.P., Sollerman, J., Wood-Vasey, W.M., et al. (2008) Time Dilation in Type Ia Supernova Spectra at High Redshift. The Astrophysical Journal, 682, 724-736. http://arxiv.org/abs/0804.3595 http://dx.doi.org/10.1086/589568
[4]  Carmeli, M. (2002) Cosmological Special Relativity. Second Edition, World Scientific, Singapore.
[5]  Supernova Cosmology Project. 26 January 2016.
http://www.supernova.lbl.gov/Union/figures/SCPUnion2.1_mu_vs_z.txt
[6]  Schaefer, B.E. (2007) The Hubble Diagram to Redshift >6 from 69 Gamma-Ray Bursts. The Astrophysical Journal, 660, 16-46. http://www.arxiv.org/abs/astro-ph/0612285 http://dx.doi.org/10.1086/511742
[7]  Carmeli, M. (2008) Relativity: Modern Large-Scale Spacetime Structure of the Cosmos. World Scientific, Singapore.
[8]  Davoudiasl, H., Morrissey, D.E., Sigurdson, K. and Tulin, S. (2010) Unified Origin for Baryonic Visible Matter and Antibaryonic Dark Matter. Physical Review Letters, 105, Article ID: 211304. http://arxiv.org/abs/1008.2399 http://dx.doi.org/10.1103/physrevlett.105.211304
[9]  Oliveira, F.J. and Hartnett, J.G. (2006) Carmeli’s Cosmology Fits Data for an Accelerating and Decelerating Universe without Dark Matter or Dark Energy. Foundations of Physics Letters, 19, 519-535. http://www.arxiv.org/abs/astro-ph/0603500v4 http://dx.doi.org/10.1007/s10702-006-1007-4
[10]  Hartnett, J.G. and Oliveira, F.J. (2007) Luminosity Distance, Angular Size and Surface Brightness in Cosmological General Relativity. Foundations of Physics, 37, 446-454. http://www.arxiv.org/abs/astro-ph/0603500v5 http://dx.doi.org/10.1007/s10701-007-9108-x
[11]  Greiner, J. (22 December 2015). http://www.mpe.mpg.de/~jcg/grbgen.html
[12]  Weinberg, S. (2008) Cosmology. Oxford University Press, New York.
[13]  Hartnett, J.G. (2008) Extending the Redshift-Distance Relation in Cosmological General Relativity to Higher Redshifts. Foundations of Physics, 38, 201-215.
http://arxiv.org/abs/0705.3097 http://dx.doi.org/10.1007/s10701-007-9198-5
[14]  Oztas, A.M. and Smith, M.L. (2014) The Cosmological Constant Constrained with Union2.1 Supernovae Type Ia Data. International Journal of Theoretical Physics, 53, 2636-2661.
http://www.arxiv.org/abs/1401.0724 http://dx.doi.org/10.1007/s10773-014-2061-5
[15]  Burles, S., Nollett, K.M. and Turner, M.S. (2001) Big-Bang Nucleosynthesis Predictions for Precision Cosmology. The Astrophysical Journal, 552, L1-L5. http://www.arxiv.org/abs/astro-ph/0010171
[16]  Cornish, N.J. (2000) Using the Acoustic Peak to Measure Cosmological Parameters. Physical Review D, 63, Article ID: 027302.
http://www.arxiv.org/abs/astro-ph/0005261 http://dx.doi.org/10.1103/physrevd.63.027302
[17]  11 January 2016. http://astro.uchicago.edu/~frieman/Courses/A411/Lecture8/Lecture8-2010.pdf
[18]  Hinshaw, G., Weiland, J.L., Hill, R.S., Odegard, N., Larson, D., Bennett, C.L., et al. (2009) Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, and Basic Results. The Astrophysical Journal Supplement Series, 180, 225-245. http://www.arxiv.org/abs/0803.0732 http://dx.doi.org/10.1088/0067-0049/180/2/225
[19]  Hanany, S., Ade, P., Balbi, A., Bock, J., Borrill, J., Boscaleri, A., et al. (2000) MAXIMA-1: A Measurement of the Cosmic Microwave Background Anisotropy on Angular Scales of 10'-5. The Astrophysical Journal Letters, 545, L5- L9. http://www.arxiv.org/abs/astro-ph/0005123
[20]  Carmeli, M. (2001) Velocity, Acceleration and Cosmic Distances in Cosmological Special Relativity. http://www.arxiv.org/abs/astro-ph/0111260
[21]  Oliveira, F.J. (2012) Particle Pair Production in Cosmological General Relativity. International Journal of Theoretical Physics, 51, 3993-4005.
http://www.arxiv.org/abs/1203.4797 http://dx.doi.org/10.1007/s10773-012-1291-7
[22]  Wikipedia: Black Hole Thermodynamics. http://www.wikipedia.org/wiki/Black_hole_thermodynamics
[23]  Corda, C. (2009) Interferometric Detection of Gravitational Waves: the Definitive Test for General Relativity. International Journal of Modern Physics D, 18, 2275-2282.
http://www.arxiv.org/abs/0905.2502 http://dx.doi.org/10.1142/S0218271809015904
[24]  Hartnett, J.G. and Tobar, M.E. (2006) Properties of Gravitational Waves in Cosmological General Relativity. International Journal of Theoretical Physics, 45, 2181-2190. http://www.arxiv.org/abs/gr-qc/0603067 http://dx.doi.org/10.1007/s10773-006-9181-5

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133