|
高压条件下简单金属熔体的输运性质及其熵标度关系
|
Abstract:
[1] | Iida, T. and Guthrie, R.I.L. (1988) The Physical Properties of Liquid Metals. Clarendon Press, Oxford. |
[2] | Brazhkin, V.V. and Lyapin, A.G.E. (2000) Universal Viscosity Growth in Metallic Melts at Megabar Pressures: The Vitreous State of the Earth’s Inner Core. Physics-Uspekhi, 43, 493.
http://dx.doi.org/10.1070/PU2000v043n05ABEH000682 |
[3] | Smylie, D.E., Brazhkin, V.V. and Palmer, A. (2009) Direct Observations of the Viscosity of Earth’s Outer Core and Extrapolation of Measurements of the Viscosity of Liquid Iron. Physics-Uspekhi, 52, 79-92.
http://dx.doi.org/10.3367/UFNe.0179.200901d.0091 |
[4] | Fomin, Y.D., Ryzhov, V.N. and Brazhkin, V.V. (2013) Properties of Liquid Iron along the Melting Line up to Earth- Core Pressures. Journal of Physics: Condensed Matter, 25, Article ID: 285104.
http://dx.doi.org/10.1088/0953-8984/25/28/285104 |
[5] | Rosenfeld, Y. (1977) Relation between the Transport Coefficients and the Internal Entropy of Simple Systems. Physical Review A, 15, 2545. http://dx.doi.org/10.1103/PhysRevA.15.2545 |
[6] | Rosenfeld, Y. (1999) A Quasi-Universal Scaling Law for Atomic Transport in Simple Fluids. Journal of Physics: Condensed Matter, 11, 5415. http://dx.doi.org/10.1088/0953-8984/11/28/303 |
[7] | Dzugutov, M. (1996) A Universal Scaling Law for Atomic Diffusion in Condensed Matter. Nature, 381, 137-139. |
[8] | Hoyt, J.J., Asta, M. and Sadigh, B. (2000) Test of the Universal Scaling Law for the Diffusion Coefficient in Liquid Metals. Physical Review Letters, 85, 594. http://dx.doi.org/10.1103/PhysRevLett.85.594 |
[9] | Li, G.X., Liu, C.S. and Zhu, Z.G. (2005) Scaling Law for Diffusion Coefficients in Simple Melts. Physical Review B, 71, Article ID: 094209. http://dx.doi.org/10.1103/PhysRevB.71.094209 |
[10] | Cao, Q.L., Kong, X.S., Li, Y.D., Wu, X. and Liu, C.S. (2011) Revisiting Scaling Laws for the Diffusion Coefficients in Simple Melts Based on the Structural Deviation from Hard-Sphere-Like Case. Physica B: Condensed Matter, 406, 3114-3119. http://dx.doi.org/10.1016/j.physb.2011.05.023 |
[11] | Cao, Q.L., Wang, P.P., Huang, D.H., Yang, J.S., Wan, M.J. and Wang, F.H. (2014) Transport Coefficients and Entropy-Scaling Law in Liquid Iron up to Earth-Core Pressures. The Journal of Chemical Physics, 140, Article ID: 114505.
http://dx.doi.org/10.1063/1.4868550 |
[12] | Cao, Q.-L., Huang, D.-H., Yang, J.-S., Wan, M.-J. and Wang, F.-H. (2014) Transport Properties and the Entropy- Scaling Law for Liquid Tantalum and Molybdenum under High Pressure. Chinese Physics Letters, 31, Article ID: 066202. http://dx.doi.org/10.1088/0256-307X/31/6/066202 |
[13] | Cao, Q.L., Shao, J.X., Wang, P.P. and Wang, F.H. (2015) Entropy-Scaling Laws for Diffusion Coefficients in Liquid Metals under High Pressures. Journal of Applied Physics, 117, Article ID: 135903.
http://dx.doi.org/10.1063/1.4916986 |
[14] | Cao, Q.-L., Wang, P.-P., Huang, D.-H., Yang, J.-S., Wan, M.-J. and Wang, F.-H. (2015) Properties of Liquid Nickel along Melting Lines under High Pressure. Chinese Physics Letters, 32, Article ID: 086201.
http://dx.doi.org/10.1088/0256-307X/32/8/086201 |
[15] | Mishin, Y., Mehl, M.J., Papaconstantopoulos, D.A., Voter, A.F. and Kress, J.D. (2001) Structural Stability and Lattice Defects in Copper: Ab Initio, Tight-Binding, and Embedded-Atom Calculations. Physical Review B, 63, Article ID: 224106. http://dx.doi.org/10.1103/PhysRevB.63.224106 |
[16] | Dai, X.D., Kong, Y., Li, J.H. and Liu, B.X. (2006) Extended Finnis-Sinclair Potential for bcc and fcc Metals and Alloys. Journal of Physics: Condensed Matter, 18, 4527-4542. http://dx.doi.org/10.1088/0953-8984/18/19/008 |
[17] | Belonoshko, A.B., Ahuja, R. and Johansson, B. (2000) Quasi—Ab Initio Molecular Dynamic Study of Fe Melting. Physical Review Letters, 84, 3638-3641. http://dx.doi.org/10.1103/PhysRevLett.84.3638 |
[18] | Pozzo, M. and Alfè, D. (2013) Melting Curve of Face-Centered-Cubic Nickel from First-Principles Calculations. Physical Review B, 88, Article ID: 024111. http://dx.doi.org/10.1103/PhysRevB.88.024111 |
[19] | Ko?i, L., Belonoshko, A.B. and Ahuja, R. (2007) Molecular Dynamics Calculation of Liquid Iron Properties and Adiabatic Temperature Gradient in the Earth’s Outer Core. Geophysical Journal International, 168, 890-894.
http://dx.doi.org/10.1111/j.1365-246X.2006.03256.x |
[20] | Alfè, D., Kresse, G. and Gillan, M.J. (2000) Structure and Dynamics of Liquid Iron under Earth’s Core Conditions. Physical Review B, 61, 132-142. http://dx.doi.org/10.1103/PhysRevB.61.132 |
[21] | Desgranges, C. and Delhommelle, J. (2007) Viscosity of Liquid Iron under High Pressure and High Temperature: Equilibrium and Nonequilibrium Molecular Dynamics Simulation Studies. Physical Review B, 76, Article ID: 172102.
http://dx.doi.org/10.1103/PhysRevB.76.172102 |
[22] | Paradis, P.F., Ishikawa, T. and Koike, N. (2007) Non-Contact Measurements of the Surface Tension and Viscosity of Molybdenum Using an Electrostatic Levitation Furnace. International Journal of Refractory Metals and Hard Materials, 25, 95-100. http://dx.doi.org/10.1016/j.ijrmhm.2006.02.001 |
[23] | Ishikawa, T., Paradis, P.F., Okada, J.T., Kumar, M.V. and Watanabe, Y. (2013) Viscosity of Molten Mo, Ta, Os, Re, and W Measured by Electrostatic Levitation. The Journal of Chemical Thermodynamics, 65, 1-6.
http://dx.doi.org/10.1016/j.jct.2013.05.036 |
[24] | Paradis, P.F., Ishikawa, T. and Yoda, S. (2005) Surface Tension and Viscosity of Liquid and Undercooled Tantalum Measured by a Containerless Method. Journal of Applied Physics, 97, Article ID: 053506.
http://dx.doi.org/10.1063/1.1854211 |
[25] | Chathoth, S.M., Meyer, A., Koza, M.M. and Juranyi, F. (2004) Atomic Diffusion in Liquid Ni, NiP, PdNiP, and PdNiCuP Alloys. Applied Physics Letters, 85, 4881-4883. http://dx.doi.org/10.1063/1.1825617 |
[26] | Jakse, N., Wax, J.F. and Pasturel, A. (2007) Transport Properties of Liquid Nickel near the Melting Point: An ab Initio Molecular Dynamics Study. The Journal of Chemical Physics, 126, Article ID: 234508.
http://dx.doi.org/10.1063/1.2741521 |
[27] | Meyer, A. (2010) Self-Diffusion in Liquid Copper as Seen by Quasielastic Neutron Scattering. Physical Review B, 81, Article ID: 012102. http://dx.doi.org/10.1103/PhysRevB.81.012102 |
[28] | Assael, M.J., Kalyva, A.E., Antoniadis, K.D., Banish, R.M., Egry, I., Wu, J., Kaschnitz, E. and Wakeham, W.A. (2010) Reference Data for the Density and Viscosity of Liquid Copper and Liquid Tin. Journal of Physical and Chemical Reference Data, 39, Article ID: 033105. http://dx.doi.org/10.1063/1.3467496 |