全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Automated Dynamic Cellular Analysis in Time-Lapse Microscopy

DOI: 10.4236/jbm.2016.43008, PP. 44-50

Keywords: High Dimension Feature Analysis, Microscopic Cell Image, Cell Division Cycle Identification, Active Contour Model, K-Means Clustering

Full-Text   Cite this paper   Add to My Lib

Abstract:

Analysis of cellular behavior is significant for studying cell cycle and detecting anti-cancer drugs. It is a very difficult task for image processing to isolate individual cells in confocal microscopic images of non-stained live cell cultures. Because these images do not have adequate textural variations. Manual cell segmentation requires massive labor and is a time consuming process. This paper describes an automated cell segmentation method for localizing the cells of Chinese hamster ovary cell culture. Several kinds of high-dimensional feature descriptors, K-means clustering method and Chan-Vese model-based level set are used to extract the cellular regions. The region extracted are used to classify phases in cell cycle. The segmentation results were experimentally assessed. As a result, the proposed method proved to be significant for cell isolation. In the evaluation experiments, we constructed a database of Chinese Hamster Ovary Cell’s microscopic images which includes various photographing environments under the guidance of a biologist.

References

[1]  Chen, X. and Wong, S.T.C. (2005) Automated Dynamic Cellular Analysis in High Throughput Drug Screens. IEEE International Symposium on Circuits and System, Kobe, 23-26 May 2005, 5, 4229-4232. http://dx.doi.org/10.1109/ISCAS.2005.1465564
[2]  Nobuyuki, O. (1980) An Automatic Threshold Selection Method Based on Discriminant and Least Squares Criteria. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, J63-D, 349-356.
[3]  Xiaobo, C., Xiaobo, Z., Stephen, T.C. and Wong (2006) Auto-mated Segmentation, Classification, and Tracking of Cancer Cell Nuclei in Time-Lapse Microscopy. IEEE Transactions on Biomedical Engineering, 53, 762-766. http://dx.doi.org/10.1109/TBME.2006.870201
[4]  Petra, P., Horst, P. and Bernd, M. (2002) Mining Knowledge for HEp-2 Cell Image Classification. Artificial Intelligence in Medicine, 26, 161-173. http://dx.doi.org/10.1016/S0933-3657(02)00057-X
[5]  Loris, N. and Alessandra, L. (2008) A Reliable Method for Cell Phenotype Image Classification. Artificial Intelligence in Medicine, 43, 87-97. http://dx.doi.org/10.1016/j.artmed.2008.03.005
[6]  Nicholas, A.H., Radosav, S.P., Kelly, H. and Rohan, D.T. (2007) Fast Automated Cell Phenotype Image Classification. BMC Bioinformatics, 8, 110. http://dx.doi.org/10.1186/1471-2105-8-110
[7]  Loris, N., Alessandra, L., Lin, Y.-S., Hsu, C.-N. and Chung, C.L. (2010) Fusion of Systems for Automated Cell Phenotype Image Classification. Expert Systems with Applications, 37, 1556-1562. http://dx.doi.org/10.1016/j.eswa.2009.06.062
[8]  Jitendra, M., Serge, B., Thomas, L. and Jianbo, S. (2001) Contour and Texture analysis for Image Segmentation. International Journal of Contour Vision, 43, 7-27. http://dx.doi.org/10.1023/A:1011174803800
[9]  Lrystian, M. and Cordelia, S. (2001) Indexing Based on Scale Inva-riant Interest Points. Computer Vision ICCV Proceedings of the Eighth IEEE International Conference, 7-14 July 2001, 1, 525-531. http://dx.doi.org/10.1109/ICCV.2001.937561
[10]  Chan, T.F. and Vese, L.A. (2001) Active Contours without Edges. IEEE Transactions on Image Processing, 10, 266- 277. http://dx.doi.org/10.1109/83.902291
[11]  Pascal, G. (2012) Chan-Vese Segmentation. Image Processing On Line, 2, 214-224. http://dx.doi.org/10.5201/ipol.2012.g-cv

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133