全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种批量最小二乘策略迭代方法

DOI: 10.11896/j.issn.1002-137X.2014.09.044

Keywords: 强化学习,批量更新,最小二乘,策略迭代

Full-Text   Cite this paper   Add to My Lib

Abstract:

策略迭代是一种迭代地评估和改进控制策略的强化学习方法。采用最小二乘的策略评估方法可以从经验数据中提取出更多有用信息,提高数据有效性。针对在线的最小二乘策略迭代方法对样本数据的利用不充分、每个样本仅使用一次就被丢弃的问题,提出一种批量最小二乘策略迭代算法(blspi),并从理论上证明其收敛性。blspi算法将批量更新方法与在线最小二乘策略迭代方法相结合,在线保存生成的样本数据,多次重复使用这些样本数据并结合最小二乘方法来更新控制策略。将blspi算法用于倒立摆实验平台,实验结果表明,该算法可以有效利用之前的经验知识,提高经验利用率,加快收敛速度。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133