全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

食物和温度对海洋底栖纤毛虫――叶状突口虫种群增长的影响

DOI: 10.3724/SP.J.1145.2010.00545, PP. 545-549

Keywords: 底栖纤毛虫,叶状突口虫,种群增长率,食物,温度

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了解海洋底栖纤毛虫的种群动力学,揭示不同温度和食物条件对其种群增长的影响,以一种潮间带常见且占优势的大型底栖纤毛虫――叶状突口虫(condylostomaspatiosum)为对象,通过在室内15℃、20℃及25℃下分别投饲等边金藻、牟氏角毛藻、杜氏盐藻和三角褐指藻,进行种群增长研究.结果显示,叶状突口虫的增长率总体上随温度升高而加快,在15℃下的增长率远低于20℃和25℃下.同时,不同食物也对增长率产生了明显影响:杜氏盐藻投喂组的纤毛虫在3种温度下均获得较高的增长率(25℃下达0.692d-1)和最大的种群数量,等边金藻投喂组则在增长率和最大种群数量上均较小,而15℃下牟氏角毛藻投喂组的种群增长率最低(仅0.103d-1).统计分析显示,食物和温度以及两者的交互作用对叶状突口虫种群增长率均有显著影响(p<0.001).本研究表明,底栖纤毛虫在较高温度和较佳食物条件下可获得更高的种群增长率.由于底栖纤毛虫的多样性(大小、食性等)及食物因子(类型及品质)的复杂性,以及食物与温度可能存在的交互作用,经由不同温度和食物条件测得的种群增长率进而估算的纤毛虫生产力可能产生较大差异.因此,在底栖微食物网模型构建时应同时考虑温度和食物的交互影响.图1表3参20

References

[1]  3landrymr,calbeta.microzooplanktonproductionintheoceans.icesjmarsci,2004,61:501~507
[2]  4hamelsi,sabbek,muylaertk,vyvermanw.quantitativeimportance,composition,andseasonaldynamicsofprotozoancommunitiesinpolyhalineversusfreshwaterintertidalsediments.microbecol,2004,47:18~29
[3]  5epsteinss.microbialfoodwebsinmarinesediments.i.trophicinteractionsandgrazingratesintwotidalflatcommunities.microbecol,1997,34:188~198
[4]  6leiyl.taxonomicinvestigationofsoilciliatesandecologicalinvestigationsofciliatesfrommarinewaters,sedimentsandsaltponds:[ph.d.thesis].univ.salzburg,austria,2005
[5]  9finlayb.thedependenceofreproductiverateoncellsizeandtemperatureinfreshwaterciliatedprotozoa.oecologia,1977,30:75~81
[6]  10hansenb,bjornsenpk,hansenpj.thesizeratiobetweenplanktonicpredatorsandtheirprey.limnoloceanogr,1994,39:395~403
[7]  11atkinsond,ciottibj,montagnesdjs.protistsdecreaseinsizelinearlywithtemperature:ca.2.5℃-1.procrsoclondb,2003,270:2605~2011
[8]  14wangm(王梅),xuhl(许恒龙),taozc(陶振铖),mahg(马洪钢),zhumz(朱名壮),songwb(宋微波).experimentalecologicalstudyonmarineciliatesi:effectsofdifferentconcentrationsofglucoseonpopulationgrowth.chinjapplenvironbiol(应用与环境生物学报),2003,9(6):627~630
[9]  17montagnesdjs,morgang,bissingj,atkinsond,weisset.short-termtemperaturechangemayimpactfreshwatercarbonflux:amicrobialperspective.globalchangebiol,2008,14:1~16
[10]  19weisset,stadlerp,lindstromes,montagnesdjs.interactiveeffectoftemperatureandfoodconcentrationongrowthrate:atestcaseusingthesmallfreshwaterciliateurotrichafarcta.limnoloceanogr,2002,47:1447~1455
[11]  1azamf,fenchelt,fieldjg,grayjs,meyer-reilla,thingstadf.theecologicalrolesofwater-columnmicrobesinthesea.marecolprogser,1983,10:257~263
[12]  2fenchelt.themicrobialloop�25yearslater.jexpmarbiolecol,2008,366:99~103
[13]  7leiyl(类彦立),xukd(徐奎栋).methodsforecologicalstudiesofmarinebenthicprotozoa.marsci(海洋科学),2007,31(5):49~57
[14]  8weisset,karstensn,meyervcl,jankel,lettners,teichgräberk.nicheseparationincommonprostomefreshwaterciliates:theeffectoffoodandtemperature.aquatmicrobecol,2001,26:167~179
[15]  12hamelsi,musscheh,sabbek,muylaertk,vyvermanw.evidenceforconstantandhighlyspecificactivefoodselectionbybenthicciliatesinmixeddiatomsassemblages.limnoloceanogr,2004,49(1):58~68
[16]  13xuhl(许恒龙),zhouls(周丽莎),yul(于丽),zhouxs(周晓苏),jiangjg(江居国),tianyj(田玉娟),miaoyl(苗月丽).experimentalecologicalstudyofmarineciliatesiv:effectsofmediaandtemperatureonpopulationgrowthofeuplotesvannus.chinjapplenvironbiol(应用与环境生物学报),2007,13(1):41~45
[17]  15mooremv,foltcl,stembergerrs.consequencesofelevatedtemperaturesforzooplanktonassemblagesintemperatelakes.archhydrobiol,1996,135:289~319
[18]  16müllerh,gellerw.maximumgrowthratesofaquaticciliatedprotozoa-thedependenceonbodysizeandtemperaturereconsidered.archhydrobiol,1993,126(3):315~327
[19]  18montagnesdjs,kimmancesa,atkinsond.usingq10:cangrowthratesincreaselinearlywithtemperature?aquatmicrobecol,2003,32:307~313
[20]  20kimmancesa,atkinsond,montagnesdjs.dotemperature-foodinteractionsmatter?responsesofproductionanditscomponentsinthemodelheterotrophicflagellateoxyrrhismarina.aquatmicrobecol,2006,42:63~73

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133