Mammary mixed tumours are the most frequent neoplasias in female dogs. In humans, mixed tumours are frequently found in the salivary glands and are known as pleomorphic adenomas. In addition to their histomorphologic similarities, mixed tumours and pleomorphic adenomas have the potential to become malignant and give rise to carcinomas in mixed tumours and carcinomas ex-pleomorphic adenoma, respectively. The factors associated with malignant transformation are still poorly known in the case of canine mixed tumours. However, this form of neoplasia tends to be associated with a better prognosis than other malignant histological types. This paper discusses the main features associated with female canine mammary mixed tumours. 1. Introduction Mammary tumours are the most frequent neoplasia in female dogs; therefore, these tumours represent a serious problem in veterinary medicine [1]. Mixed tumours are one of the most common tumour types in the female canine mammary glands. These tumours exhibit a complex histological pattern because they comprise elements from the epithelium and the mesenchyme and have the capacity to undergo malignant transformation, thereby giving rise mainly to carcinomas and less frequently carcinosarcomas and sarcomas in mixed tumours [2, 3]. Defining the origin of the several cellular elements involved in mixed tumours, as well as the factors contributing to malignant transformation is important in understanding the behaviour and evolution of this type of neoplasia. However, these components of mixed tumours still remain to be elucidate. This paper discusses the main features associated with the clinical-epidemiological characteristics, histogenesis, malignant transformation, and comparative aspects of female canine mammary mixed tumours. 2. Definition/Morphology Benign mixed tumours are characterised by the presence of benign epithelial elements (ductal and/or acinar and myoepithelial cells) and mesenchymal cells with cartilage and/or bone formation eventually combined with myxoid fibrous tissue [2] (Figure 1(a)). Figure 1: (a) Benign mixed tumor in canine mammary gland presenting chondroid and myeloid metaplasia. HE, 10x. (b) Ductal in situ carcinoma in benign mixed tumor in canine mammary gland presenting myoepithelial cells producing myxoid matrix. HE, 40x. (c) Carcinoma in benign mixed tumor in canine mammary gland presenting in situ carcinomatous areas and myoepithelial cell proliferation producing myxoid matrix. HE, 20x. (d) Carcinoma in benign mixed tumor in canine mammary gland presenting invasive areas in the adjacent stroma
References
[1]
G. D. Cassali, B. M. Melo, N. Madureira, et al., “Mammary gland diagnosis of the laboratory of comparative pathology—UFMG, from 2000 to 2008,” in Proceedings of the World Small Animal Veterinary Association, vol. 14, p. 173, S?o Paulo, Brazil, 2009, Clínica Veterinária-supplement.
[2]
W. Misdorp, R. W. Else, and E. Hellmen, Histological Classification of Mammary Tumors of the Dog and the Cat, World Health Organization, Geneva, Switzerland, 1999.
[3]
G. D. Cassali, G. E. Lavalle, A. B. De Nardi, et al., “Consensus for the diagnosis, prognosis and treatment of canine mammary tumors,” Brazilian Journal of Veterinary Pathology, vol. 4, no. 2, pp. 153–180, 2011.
[4]
F. Grandi, M. M. Colodel, L. N. Monteiro, J. R. V. Le?o, and N. S. Rocha, “Extramedullary hematopoiesis in a case of benign mixed mammary tumor in a female dog: cytological and histopathological assessment,” BMC Veterinary Research, vol. 6, article 45, 2010.
[5]
P. A. Auler, A. C. Bertagnolli, E. Ferreira, et al., “Myeloid metaplasia in canine mixed mammary tumors: occurrence and characterization,” Veterinary Quarterly, vol. 31, no. 4, pp. 173–177, 2011.
[6]
F. G?rtner, M. Geraldes, G. Cassali, A. Rema, and F. Schmitt, “DNA measurement and immunohistochemical characterization of epithelial and mesenchymal cells in canine mixed mammary tumours: putative evidence for a common histogenesis,” The Veterinary Journal, vol. 158, no. 1, pp. 39–47, 1999.
[7]
A. Gama, A. Alves, F. Gartner, and F. Schmitt, “p63: a novel myoepithelial cell marker in canine mammary tissues,” Veterinary Pathology, vol. 40, no. 4, pp. 412–420, 2003.
[8]
A. E. De Los Monteros, M. Y. Millán, G. A. Ramírez, J. Ordás, C. Reymundo, and J. Martín De Las Mulas, “Expression of maspin in mammary gland tumors of the dog,” Veterinary Pathology, vol. 42, no. 3, pp. 250–257, 2005.
[9]
L. N. Z. Ramalho, A. Ribeiro-Silva, G. D. Cassali, and S. Zucoloto, “The expression of p63 and cytokeratin 5 in mixed tumors of the canine mammary gland provides new insights into the histogenesis of these neoplasms,” Veterinary Pathology, vol. 43, no. 4, pp. 424–429, 2006.
[10]
A. C. Bertagnolli, G. D. Cassali, M. C. L. S. Genelhu, F. A. Costa, J. F. C. Oliveira, and P. B. D. Gon?alves, “Immunohistochemical expression of p63 and δNp63 in mixed tumors of canine mammary glands and its relation with p53 expression,” Veterinary Pathology, vol. 46, no. 3, pp. 407–415, 2009.
[11]
J. F. Hampe and W. Misdorp, “Tumours and dysplasias of the mammary gland,” Bulletin of the World Health Organization, vol. 50, no. 1-2, pp. 111–133, 1974.
[12]
J. E. Moulton, “Tumors of the mammary gland,” in Tumors in Domestic Animals, pp. 518–552, University of California Press, Berkeley, Calif, USA, 3rd edition, 1990.
[13]
S. A. Benjamin, A. C. Lee, and W. J. Saunders, “Classification and behavior of canine mammary epithelial neoplasms based on life-span observations in Beagles,” Veterinary Pathology, vol. 36, no. 5, pp. 423–436, 1999.
[14]
A. G. Jabara, “Canine mixed tumours,” The Australian Veterinary Journal, vol. 36, no. 5, pp. 212–221, 1960.
[15]
G. Sittner, “Mammamischtumor bei einem m?nnlichen Hund und seine Histogenese,” Archiv für Wissenschaftliche und Praktische Tierheilkunde, no. 74, pp. 406–410, 1939.
[16]
E. Cotchin, “Some glandular tumours of the dog,” Proceedings of the Royal Society of Medicine, vol. 40, no. 11, pp. 636–638, 1947.
[17]
K. Nieberle, “Zur Kenntnis der sog. Mammamischgeschwülste des Hundes,” Journal of Cancer Research And Clinical Oncology, vol. 39, no. 1, pp. 113–127, 1933.
[18]
R. M. Mulligan, Neoplasms of the Dog, Willians and Wilkins, Baltimore, Md, USA, 1949.
[19]
H. G. Richards, P. E. McNeil, H. Thompson, and S. W. J. Reid, “An epidemiological analysis of a canine-biopsies database compiled by a diagnostic histopathology service,” Preventive Veterinary Medicine, vol. 51, no. 1-2, pp. 125–136, 2001.
[20]
M. C. L. S. Genelhu, S. V. Cardoso, H. Gobbi, and G. D. Cassali, “A comparative study between mixed-type tumours from human salivary and canine mammary glands,” BMC Cancer, vol. 7, article 218, 2007.
[21]
W. A. Priester, “Occurrence of mammary neoplasms in bitches in relation to breed, age, tumour type, and geographical region from which reported,” Journal of Small Animal Practice, vol. 20, no. 1, pp. 1–11, 1979.
[22]
M. F. Cavalcanti, Fatores prognósticos na abordagem clínica e histopatológica dos carcinomas mamários de cadelas: estadiamento TNM e sistema de Nottingham [M.S. thesis], Federal University of Minas Gerais, Belo Horizonte, Brazil, 2006.
[23]
T. Yamagami, T. Kobayashi, K. Takahashi, and M. Sugiyama, “Prognosis for canine malignant mammary tumors based on TNM and histologic classification,” The Journal of Veterinary Medical Science, vol. 58, no. 11, pp. 1079–1083, 1996.
[24]
W. Misdorp, E. Cotchin, J. F. Hampe, A. G. Jabara, and J. von Sandersleben, “Canine malignant mammary tumours. II. Adenocarcinomas, solid carcinomas and spindle cell carcinomas,” Veterinary Pathology, vol. 9, no. 6, pp. 447–470, 1972.
[25]
W. Misdorp, “Tumors of the mammary gland,” in Tumours in Domestic Animals, pp. 575–606, Iowa State Press, Ames, Iowa, USA, 4th edition, 2002.
[26]
D. E. Bostock, “The prognosis following the surgical excision of canine mammary neoplasms,” European Journal of Cancer and Clinical Oncology, vol. 11, no. 6, pp. 389–396, 1975.
[27]
A. C. Bertagnolli, E. Ferreira, E. J. Dias, and G. D. Cassali, “Canine mammary mixed tumours: immunohistochemical expressions of EGFR and HER-2,” Australian Veterinary Journal, vol. 89, no. 8, pp. 312–317, 2011.
[28]
Y. G. Man, L. Tai, R. Barner et al., “Cell clusters overlying focally disrupted mammary myoepithelial cell layers and adjacent cells within the same duct display different immunohistochemical and genetic features: implications for tumor progression and invasion,” Breast Cancer Research, vol. 5, no. 6, pp. R231–R241, 2003.
[29]
A. E. Los de Monteros, M. Y. Millán, J. Ordás, L. Carrasco, C. Reymundo, and J. Martín Las de Mulas, “Immunolocalization of the smooth muscle-specific protein calponin in complex and mixed tumors of the mammary gland of the dog: assessment of the morphogenetic role of the myoepithelium,” Veterinary Pathology, vol. 39, no. 2, pp. 247–256, 2002.
[30]
Y. G. Man and Q. X. A. Sang, “The significance of focal myoepithelial cell layer disruptions in human breast tumor invasion: a paradigm shift from the "protease-centered" hypothesis,” Experimental Cell Research, vol. 301, no. 2, pp. 103–118, 2004.
[31]
T. Gudjonsson, L. R?nnov-Jessen, R. Villadsen, F. Rank, M. J. Bissell, and O. W. Petersen, “Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition,” Journal of Cell Science, vol. 115, no. 1, pp. 39–50, 2002.
[32]
Z. Xu, W. Wang, C. X. Deng, and Y. G. Man, “Aberrant p63 and WT-1 expression in myoepithelial cells of pregnancy-associated breast cancer: implications for tumor aggressiveness and invasiveness,” International Journal of Biological Sciences, vol. 5, no. 1, pp. 82–96, 2009.
[33]
U. Hinrichs, G. R. Rutteman, and H. Nederbragt, “Stromal accumulation of chondroitin sulphate in mammary tumours of dogs,” British Journal of Cancer, vol. 80, no. 9, pp. 1359–1365, 1999.
[34]
I. Erdélyi, D. H. M. Nieskens, J. E. Van Dijk, L. Vass, and H. Nederbragt, “Immunohistochemical evaluation of versican, in relation to chondroitin sulphate, in canine mammary tumours,” Histology and Histopathology, vol. 18, no. 4, pp. 1067–1080, 2003.
[35]
I. Erdélyi, A. J. A. M. Van Asten, J. E. Van Dijk, and H. Nederbragt, “Expression of versican in relation to chondrogenesis-related extracellular matrix components in canine mammary tumors,” Histochemistry and Cell Biology, vol. 124, no. 2, pp. 139–149, 2005.
[36]
A. C. Allen, “So-called mixed tumors of the mammary gland of dog and man,” Archives of Pathology, vol. 29, pp. 589–624, 1940.
[37]
C. Huggins and P. V. Moulder, “Studies of the mammary tumours of dog. I. Lactation and the influence of ovariectomy and suprarenalectomy thereon,” The Journal of Experimental Medicine, vol. 80, no. 5, pp. 441–454, 1944.
[38]
F. Bloom, Pathology of the Dog and Cat: The Genitourinary System With Clinical Considerations, American Veterinary Publications, 1954.
[39]
E. Cotchin, “Mammary neoplasms of the bitch,” The Journal of Comparative Pathology and Therapeutics, vol. 68, pp. 1–22, 1958.
[40]
S. Erichsen, “A histochemical study of mixed tumors of the canine mammary gland,” Acta Pathology and Microbiology Scandinavica, vol. 36, pp. 490–502, 1955.
[41]
J. V. Hurley and A. G. Jabara, “Properties of “cartilage” in canine mammary tumors,” Archives of Pathology, vol. 77, pp. 343–347, 1964.
[42]
L. T. Pulley, “Ultrastructural and histochemical demonstration of myoepithelium in mixed tumors of the canine mammary gland,” American Journal of Veterinary Research, vol. 34, no. 12, pp. 1513–1522, 1973.
[43]
S. Tateyama and E. Cotchin, “Alkaline phosphatase reaction of canine mammary mixed tumours: a light and electron microscopic study,” Research in Veterinary Science, vol. 23, no. 3, pp. 356–364, 1977.
[44]
S. Tateyama and E. Cotchin, “Electron microscopic observations on canine mixed mammary tumors, with special reference to cytoplasmic filamentous components,” American Journal of Veterinary Research, vol. 39, no. 9, pp. 1494–1501, 1978.
[45]
E. Destexhe, L. Lespagnard, M. Degeyter, R. Heymann, and F. Coignoul, “Immunohistochemical identification of myoepithelial, epithelial, and connective tissue cells in canine mammary tumors,” Veterinary Pathology, vol. 30, no. 2, pp. 146–154, 1993.
[46]
K. Arai, H. Nakano, M. Shibutani, M. Naoi, and H. Matsuda, “Expression of class II β-tubulin by proliferative myoepithelial cells in canine mammary mixed tumors,” Veterinary Pathology, vol. 40, no. 6, pp. 670–676, 2003.
[47]
K. Arai, K. Uehara, and Y. Nagai, “Expression of type II and type XI collagens in canine mammary mixed tumors and demonstration of collagen production by tumor cells in collagen gel culture,” Japanese Journal of Cancer Research, vol. 80, no. 9, pp. 840–847, 1989.
[48]
K. Arai, K. Uehara, and Y. Nagai, “Simultaneous expression of type IX collagen and an inhibin-related antigen in proliferative myoepithelial cells with pleomorphic adenoma of canine mammary glands,” Japanese Journal of Cancer Research, vol. 86, no. 6, pp. 577–584, 1995.
[49]
S. Tateyama, K. Uchida, T. Hidaka, M. Hirao, and R. Yamaguchi, “Expression of bone morphogenetic protein-6 (BMP-6) in myoepithelial cells in canine mammary gland tumors,” Veterinary Pathology, vol. 38, no. 6, pp. 703–709, 2001.
[50]
T. Akiyoshi, K. Uchida, and S. Tateyama, “Expression of bone morphogenetic protein-6 and bone morphogenetic protein receptors in myoepithelial cells of canine mammary gland tumors,” Veterinary Pathology, vol. 41, no. 2, pp. 154–163, 2004.
[51]
A. Kawabata, K. Okano, K. Uchida, R. Yamaguchi, T. Hayashi, and S. Tateyama, “Co-localization of chondromodulin-I (ChM-I) and bone morphogenetic protein-6 (BMP-6) in myoepithelial cells of canine mammary tumors,” The Journal of Veterinary Medical Science, vol. 67, no. 11, pp. 1097–1102, 2005.
[52]
K. Arai, M. Naoi, and K. Uehara, “Immunohistochemical examination of neural cell adhesion molecule (NCAM), tenascin and fibronectin on the development of cartilaginous tissue in canine mammary mixed tumors,” The Journal of Veterinary Medical Science, vol. 56, no. 4, pp. 809–811, 1994.
[53]
G. D. Cassali, A. C. Bertagnolli, F. G?rtner, and F. Schmitt, “Canine mammary tumours: a quantitative DNA study using static cytometry,” Revista Espanola de Patologia, vol. 44, no. 4, pp. 195–201, 2011.
[54]
A. C. Bertagnolli, P. Soares, B. van Asch et al., “An assessment of the clonality of the components of canine mixed mammary tumours by mitochondrial DNA analysis,” The Veterinary Journal, vol. 182, no. 2, pp. 269–274, 2009.
[55]
M. Ferletta, J. Grawé, and E. Hellmén, “Canine mammary tumors contain cancer stem-like cells and form spheroids with an embryonic stem cell signature,” The International Journal of Developmental Biology, vol. 55, pp. 791–799, 2011.
[56]
M. L. Voz, W. J. Van de Ven, and K. Kas, “First insights into the molecular basis of pleomorphic adenomas of the salivary glands,” Advances in Dental Research, vol. 14, no. 1, pp. 81–83, 2000.
[57]
P. L. Auclair and G. L. Ellis, “Atypical features in salivary gland mixed tumors: their relationship to malignant transformation,” Modern Pathology, vol. 9, no. 6, pp. 652–657, 1996.
[58]
E. Ferreira, A. C. Bertagnolli, M. F. Cavalcanti, F. C. Schmitt, and G. D. Cassali, “The relationship between tumour size and expression of prognostic markers in benign and malignant canine mammary tumours,” Veterinary and Comparative Oncology, vol. 7, no. 4, pp. 230–235, 2009.
[59]
J. E. Lewis, K. D. Olsen, and T. J. Sebo, “Carcinoma ex pleomorphic adenoma: pathologic analysis of 73 cases,” Human Pathology, vol. 32, no. 6, pp. 596–604, 2001.
[60]
E. S. Wargotz and H. J. Norris, “Metaplastic carcinomas of the breast. I. Matrix-producing carcinoma,” Human Pathology, vol. 20, no. 7, pp. 628–635, 1989.
[61]
V. A. Livolsi and K. H. Perzin, “Malignant mixed tumors arising in salivary glands. I. Carcinoma arising in benign mixed tumors: a clinicopathologic study,” Cancer, vol. 39, no. 5, pp. 2209–2230, 1977.
[62]
V. C. de Araújo, A. Altemani, C. Furuse, M. T. Martins, and N. S. de Araújo, “Immunoprofile of reactive salivary myoepithelial cells in intraductal areas of carcinoma ex-pleomorphic adenoma,” Oral Oncology, vol. 42, no. 10, pp. 1011–1016, 2006.
[63]
C. Chhieng, M. Cranor, M. E. Lesser, and P. P. Rosen, “Metaplastic carcinoma of the breast with osteocartilaginous heterologous elements,” American Journal of Surgical Pathology, vol. 22, no. 2, pp. 188–194, 1998.
[64]
Y. Yamamoto, Y. Kishimoto, I. I. Wistuba et al., “DNA analysis at p53 locus in carcinomas arising from pleomorphic adenomas of salivary glands: comparison of molecular study and p53 immunostaining,” Pathology International, vol. 48, no. 4, pp. 265–272, 1998.
[65]
J. S. Morris, C. Nixon, O. J. A. King, I. M. Morgan, and A. W. Philbey, “Expression of TopBP1 in canine mammary neoplasia in relation to histological type, Ki67, ERα and p53,” The Veterinary Journal, vol. 179, no. 3, pp. 422–429, 2009.
[66]
H. Deguchi, H. Hamano, and Y. Hayashi, “c-myc, ras p21 and p53 expression in pleomorphic adenoma and its malignant form of the human salivary glands,” Acta Pathologica Japonica, vol. 43, no. 7-8, pp. 413–422, 1993.
[67]
S. Di Palma, A. Skálová, T. Vanìèek, R. H. W. Simpson, I. Stárek, and I. Leivo, “Non-invasive (intracapsular) carcinoma ex pleomorphic adenoma: recognition of focal carcinoma by HER-2/neu and MIB1 immunohistochemistry,” Histopathology, vol. 46, no. 2, pp. 144–152, 2005.
[68]
S. Matsubayashi and T. Yoshihara, “Carcinoma ex pleomorphic adenoma of the salivary gland: an immunohistochemical study,” European Archives of Oto-Rhino-Laryngology, vol. 264, no. 7, pp. 789–795, 2007.
[69]
G. Gauchotte, L. Coffinet, E. Schmitt et al., “Salivary gland anlage tumor: a clinicopathological study of two cases,” Fetal & Pediatric Pathology, vol. 30, no. 2, pp. 116–123, 2011.
[70]
R. F. do Prado, A. Consolaro, and L. A. Taveira, “Expression of betacatenin in carcinoma in pleomorphic adenoma, pleomorphic adenoma and normal salivary gland: an immunohistochemical study,” Medicina Oral, Patología Oral y Cirugía Bucal., vol. 11, no. 3, pp. E247–E251, 2006.