全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于机载小光斑lidar数据插值的亚热带森林丘陵地形的误差分析

DOI: 10.3969/j.issn.1000-2006.2014.04.002, PP. 7-13

Keywords: 机载激光雷达,地形插值,数字高程模型,亚热带森林,森林参数提取

Full-Text   Cite this paper   Add to My Lib

Abstract:

以激光雷达(lidar)地面点云数据为数据源,将北亚热带天然次生林下的丘陵地形作为研究对象,分析了6种常用局部插值方法生成dem的全局误差及其与地形因子、地面插值点密度和地表植被状况的相互关系,并借助随机森林方法进行插值误差不确定性制图。研究表明:各插值表面的预测值总体偏低,其最佳输出空间分辨率为2m;其中以自然邻近法插值生成的数字地形精度最高且可视化效果最好,而张力样条法的精度最低;全局误差随坡度增大而逐渐提升,随地面插值点密度提高逐渐降低;幼龄和中龄天然次生林所在区域地形插值的误差较大而成熟林的误差最大,灌木区全局误差不高但误差变异较大。同时,以lidar提取的植被参数与地形插值误差表现了较好的相关性,而归一化植被指数(ndvi)与误差之间的相关不明显,这表明以lidar数据提取植被参数在ndvi易饱和地区也可以较好地反映地形插值精度。

References

[1]  ferstercj,coopsnc,trofymowja.abovegroundlargetreemassestimationinacoastalforestinbritishcolumbiausingplot-levelmetricsandindividualtreedetectionfromlidar[j].canadianjournalofremotesensing,2009,35(3):270-275.
[2]  limk,treitzp,baldwink,etal.lidarremotesensingofbiophysicalpropertiesoftolerantnorthernhardwoodforests[j].canadianjournalofremotesensing,2003,29(5):658-678.
[3]  drakejb,dubayahro,clarkdb,etal,estimationoftropicalforeststructuralcharacteristicsusinglarge-footprintlidar[j].remotesensingofenvironment,2002,79:305-319.
[4]  hodgsonme,jensenj,raberg,etal.anevaluationoflidar-derivedelevationandterrainslopeinleaf-offconditions[j].photogrammetricengineering&remotesensing,2005,71(7):817-823.
[5]  潘百红,张正明,曹铁如.江苏虞山国家森林公园的天然植被[j].中南林业科技大学学报,2007,27(4):123-128.panbh,zhangzm,caotr.naturalvegetationofyusannationalforestparkinjiangsuprovince,china[j].journalofcentralsouthuniversityofforestry&technology,2007,27(4):123-128.
[6]  philipgm,watsondf.aprecisemethodfordeterminingcontouredsurfaces[j].australianpetroleumexplorationassociationjournal,1982,22:205-212.
[7]  watsondf,philipgm.arefinementofinversedistanceweightedinterpolation[j].geoprocessing,1985,2:315-327.
[8]  watsond.contouring:aguidetotheanalysisanddisplayofspatialdata[m].london:pergamonpress,1992.
[9]  heritageag,milanbd,largeca.influenceofsurveystrategyandinterpolationmodelondemquality[j].geomorphology,2009,112(3):334-344.
[10]  yuet,duz,songd,etal.anewmethodofsurfacemodelinganditsapplicationtodemconstruction[j].geomorphology.2007,91(1):161-172.
[11]  rodríguezvf,abarcaf,ghimireb.incorporatingspatialvariabilitymeasuresinland-coverclassificationusingrandomforest[j].procediaenvironmentalsciences,2011(3):44-49.
[12]  pallog,jonab,johannesrs.randomforestsforlandcoverclassification[j].patternrecognitionletters,2006,27(4):294-300.
[13]  lefskyma,cohenwb,ackersa,etal.lidarremotesensingofthecanopystructureandbiophysicalpropertiesofdouglas-firwesternhemlockforests[j].remotesensingofenvironment,1999,70(3):339-361.
[14]  naessete.predictingforeststandcharacteristicswithairbornescanninglaserusingapracticaltwo-stageprocedureandfielddata[j].remotesensingofenvironment,2002,80(1):88-99.
[15]  lefskyma,cohenwb,hardingd,etal.remotesensingofabovegroundbiomassinthreebiomes:internationalarchivesofthephotogrammetry[j].remotesensingandspatialinformationsciences,2001,34:155-160.
[16]  adamsjc,chandlerjh.evaluationoflidarandmediumscalephotogrammetryfordetectionsoft-cliffcoastalchange[j].photogrammetricrecord,2002,17(99):405-418.
[17]  yanalakm.effectofgriddingmethodondigitalterrainmodelprofiledatabasedonscattereddata[j].journalofcomputingincivilengineering,2003,17(1):58-67.
[18]  abramovo,mcewana.anevaluationofinterpolationmethodsformarsorbiterlaseraltimeter(mola)data[j].internationaljournalofremotesensing,2004,25(3):669-676.
[19]  lloydcd,atkinsonpm.derivingdsmsfromlidardatawithkriging[j].internationaljournalofremotesensing,2002,23:2519-2524.
[20]  庞勇,李增元.基于机载激光雷达的小兴安岭温带森林组分生物量反演[j].植物生态学报,2012,36(10):1095-1105.pangy,lizy.inversionofbiomasscomponentsofthetemperateforestusingairbornelidartechnologyinxiaoxing’anmountains,northeasternofchina[j].chinesejournalofplantecology,2012,36(10):10951105.
[21]  sibsonr.abriefdescriptionofnaturalneighborinterpolation[m].newyork:johnwiley&sons,1981.
[22]  周淑芳,李增元,范文义,等,基于机载激光雷达数据的dem获取及应用[j].遥感技术与应用,2007,22(3):356-360.
[23]  tuckercj.redandphotographicinfraredlinearcombinationsformonitoringvegetation[j].remotesensingofenvironment,1979,8:127-150.
[24]  breimanl.randomforests[j].machinelearning,2001,45(1):5-32.
[25]  verikasa,gelzina,bacauskienem.miningdatawithrandomforests:asurveyandresultsofnewtests[j].patternrecognition,2011,44(2):330-349.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133