全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Intramuscular Adipose Tissue, Sarcopenia, and Mobility Function in Older Individuals

DOI: 10.1155/2012/629637

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective. Intramuscular adipose tissue (IMAT) and sarcopenia may adversely impact mobility function and physical activity. This study determined the association of locomotor muscle structure and function with mobility function in older adults. Method. 109 older adults with a variety of comorbid disease conditions were examined for thigh muscle composition via MRI, knee extensor strength via isometric dynamometry, and mobility function. The contribution of strength, quadriceps lean tissue, and IMAT to explaining the variability in mobility function was examined using multivariate linear regression models. Results. The predictors as a group contributed 27–45% of the variance in all outcome measures; however, IMAT contributed between 8–15% of the variance in all four mobility variables, while lean explained only 5% variance in only one mobility measure. Conclusions. Thigh IMAT, a newly identified muscle impairment appears to be a potent muscle variable related to the ability of older adults to move about in their community. 1. Introduction The European Working Group on Sarcopenia in Older People [1] has recently suggested that the definition of sarcopenia should include not only low muscle mass but also low muscle function (strength or performance) because sarcopenia is a syndrome that is characterized by both. The loss of muscle mass and strength are problems that plague many older adults, though the causal and correlative link between diminishing lean mass and strength is not well supported in aging humans [2]. Aging is also characterized by increasing depots of fat both between and within skeletal muscles [3]. This increase in intramuscular adipose tissue (IMAT), and its lipotoxic effect, has been identified as a potential contributor to declining strength and muscle quality; with some also associating it with mobility limitations in older adults [4–8]. The recent structural focus on IMAT content rather than lean muscle mass is important as it could provide a plausible explanation for age-associated strength and mobility deficits. Fatty infiltration into skeletal muscle may alter muscle fiber orientation and hence the force producing capabilities of the whole muscle. IMAT may also be a metabolically active component of muscle that secretes inflammatory cytokines leading to systemic inflammation, much like visceral adipose tissue, that can inhibit muscle force production even in the absence of muscle atrophy [9]. Further, IMAT may be an appropriate therapeutic rehabilitation target as some suggest its presence can blunt the strength response to

References

[1]  A. J. Cruz-Jentoft, J. P. Baeyens, J. M. Bauer et al., “Sarcopenia: European consensus on definition and diagnosis,” Age and Ageing, vol. 39, no. 4, pp. 412–423, 2010.
[2]  B. H. Goodpaster, S. W. Park, T. B. Harris et al., “The loss of skeletal muscle strength, mass, and quality in older adults: the Health, Aging and Body Composition Study,” Journals of Gerontology—Series A, vol. 61, no. 10, pp. 1059–1064, 2006.
[3]  R. L. Marcus, O. Addison, J. P. Kidde, L. E. Dibble, and P. C. Lastayo, “Skeletal muscle fat infiltration: impact of age, inactivity, and exercise,” The Journal of Nutrition, Health and Aging, vol. 14, no. 5, pp. 362–366, 2010.
[4]  M. J. Delmonico, T. B. Harris, M. Visser et al., “Longitudinal study of muscle strength, quality, and adipose tissue infiltration,” American Journal of Clinical Nutrition, vol. 90, no. 6, pp. 1579–1585, 2009.
[5]  B. H. Goodpaster, C. L. Carlson, M. Visser et al., “Attenuation of skeletal muscle and strength in the elderly: the health ABC study,” Journal of Applied Physiology, vol. 90, no. 6, pp. 2157–2165, 2001.
[6]  B. H. Goodpaster, F. L. Thaete, and D. E. Kelley, “Thigh adipose tissue distribution is associated with insulin resistance in obesity and in type 2 diabetes mellitus,” American Journal of Clinical Nutrition, vol. 71, no. 4, pp. 885–892, 2000.
[7]  T. N. Hilton, L. J. Tuttle, K. L. Bohnert, M. J. Mueller, and D. R. Sinacore, “Excessive adipose tissue infiltration in skeletal muscle in individuals with obesity, diabetes mellitus, and peripheral neuropathy: association with performance and function,” Physical Therapy, vol. 88, no. 11, pp. 1336–1344, 2008.
[8]  M. Visser, B. H. Goodpaster, S. B. Kritchevsky et al., “Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons,” Journals of Gerontology—Series A, vol. 60, no. 3, pp. 324–333, 2005.
[9]  B. J. Hardin, K. S. Campbell, J. D. Smith et al., “TNF-α acts via TNFR1 and muscle-derived oxidants to depress myofibrillar force in murine skeletal muscle,” Journal of Applied Physiology, vol. 104, no. 3, pp. 694–699, 2008.
[10]  H. Bruunsgaard, E. Bjerregaard, M. Schroll, and B. K. Pedersen, “Muscle strength after resistance training is inversely correlated with baseline levels of soluble tumor necrosis factor receptors in the oldest old,” Journal of the American Geriatrics Society, vol. 52, no. 2, pp. 237–241, 2004.
[11]  A. Kovanlikaya, C. Guclu, C. Desai, R. Becerra, and V. Gilsanz, “Fat quantification using three-point Dixon technique: in vitro validation,” Academic Radiology, vol. 12, no. 5, pp. 636–639, 2005.
[12]  L. E. Dibble, T. F. Hale, R. L. Marcus, J. Droge, J. P. Gerber, and P. C. LaStayo, “High-intensity resistance training amplifies muscle hypertrophy and functional gains in persons with parkinson's disease,” Movement Disorders, vol. 21, no. 9, pp. 1444–1452, 2006.
[13]  C. P. Elder, D. F. Apple, C. S. Bickel, R. A. Meyer, and G. A. Dudley, “Intramuscular fat and glucose tolerance after spinal cord injury—a cross-sectional study,” Spinal Cord, vol. 42, no. 12, pp. 711–716, 2004.
[14]  A. S. Gorgey and G. A. Dudley, “Skeletal muscle atrophy and increased intramuscular fat after incomplete spinal cord injury,” Spinal Cord, vol. 45, no. 4, pp. 304–309, 2007.
[15]  P. L. Enright, M. A. McBurnie, V. Bittner et al., “The 6-min walk test: a quick measure of functional status in elderly adults,” Chest, vol. 123, no. 2, pp. 387–398, 2003.
[16]  D. M. Kennedy, P. W. Stratford, J. Wessel, J. D. Gollish, and D. Penney, “Assessing stability and change of four performance measures: a longitudinal study evaluating outcome following total hip and knee arthroplasty,” BMC Musculoskeletal Disorders, vol. 6, article 3, 2005.
[17]  A. Shumway-Cook, S. Brauer, and M. Woollacott, “Predicting the probability for falls in community-dwelling older adults using the timed up and go test,” Physical Therapy, vol. 80, no. 9, pp. 896–903, 2000.
[18]  M. Visser, S. B. Kritchevsky, B. H. Goodpaster et al., “Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70 to 79: the Health, Aging and Body Composition Study,” Journal of the American Geriatrics Society, vol. 50, no. 5, pp. 897–904, 2002.
[19]  C. Garcia-Martinez, F. J. Lopez-Soriano, and J. M. Argiles, “Acute treatment with tumour necrosis factor-α induces changes in protein metabolism in rat skeletal muscle,” Molecular and Cellular Biochemistry, vol. 125, no. 1, pp. 11–18, 1993.
[20]  F. Haddad, F. Zaldivar, D. M. Cooper, and G. R. Adams, “IL-6-induced skeletal muscle atrophy,” Journal of Applied Physiology, vol. 98, no. 3, pp. 911–917, 2005.
[21]  I. Bautmans, R. Njemini, S. Vasseur et al., “Biochemical changes in response to intensive resistance exercise training in the elderly,” Gerontology, vol. 51, no. 4, pp. 253–265, 2005.
[22]  T. B. Harris, L. Ferrucci, R. P. Tracy et al., “Associations of elevated interleukin-6 and C-reactive protein levels with mortality in the elderly,” American Journal of Medicine, vol. 106, no. 5, pp. 506–512, 1999.
[23]  B. J. Nicklas, F. C. Hsu, T. J. Brinkley et al., “Exercise training and plasma C-reactive protein and interleukin-6 in elderly people,” Journal of the American Geriatrics Society, vol. 56, no. 11, pp. 2045–2052, 2008.
[24]  L. A. Schaap, S. M. F. Pluijm, D. J. H. Deeg et al., “Higher inflammatory marker levels in older persons: associations with 5-year change in muscle mass and muscle strength,” Journals of Gerontology—Series A, vol. 64, no. 11, pp. 1183–1189, 2009.
[25]  J. Kidde, R. L. Marcus, L. Dibble, S. Smith, and P. Lastayo, “Regional muscle and whole-body composition factors related to mobility in older individuals: a review,” Physiotherapy Canada, vol. 61, no. 4, pp. 197–209, 2009.
[26]  B. H. Goodpaster, P. Chomentowski, B. K. Ward et al., “Effects of physical activity on strength and skeletal muscle fat infiltration in older adults: a randomized controlled trial,” Journal of Applied Physiology, vol. 105, no. 5, pp. 1498–1503, 2008.
[27]  R. L. Marcus, J. Kidde, L. Dibble, O. Addison, and P. C. LaStayo, “Intramuscular fat in older adults and the impact of resistance training,” The Journal of Nutrition, Health and Aging, vol. 12, no. 7, 2008.
[28]  R. L. Marcus, S. Smith, G. Morrell et al., “Comparison of combined aerobic and high-force eccentric resistance exercise with aerobic exercise only for people with type 2 diabetes mellitus,” Physical Therapy, vol. 88, no. 11, pp. 1345–1354, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133