全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
软件学报  2015 

云平台下基于粗糙集的并行增量知识更新算法

DOI: 10.13328/j.cnki.jos.004590, PP. 1064-1078

Keywords: 云计算,mapreduce,粗糙集,增量学习

Full-Text   Cite this paper   Add to My Lib

Abstract:

日益复杂和动态变化的海量数据处理,是当前人们普遍关注的问题,其核心内容之一是研究如何利用已有的信息实现快速的知识更新.粒计算是近年来新兴的一个研究领域,是信息处理的一种新的概念和计算范式,主要用于描述和处理不确定的、模糊的、不完整的和海量的信息,以及提供一种基于粒与粒间关系的问题求解方法.作为粒计算理论中的一个重要组成部分,粗糙集是一种处理不确定性和不精确性问题的有效数学工具.根据云计算中的并行模型mapreduce,给出了并行计算粗糙集中等价类、决策类和两者之间相关性的算法;然后,设计了用于处理大规模数据的并行粗糙近似集求解算法.为应对动态变化的海量数据,结合mapreduce模型和增量更新方法,根据不同的增量策略,设计了两种并行增量更新粗糙近似集的算法.实验结果表明,该算法可以有效地快速更新知识;而且数据量越大,效果越明显.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133