全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基因组编辑:植物生物技术的机遇与挑战

DOI: 10.13560/j.cnki.biotech.bull.1985.2015.03.016, PP. 25-33

Keywords: 序列特异性核酸酶,基因组编辑,植物基因工程

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于序列特异性核酸酶的基因组编辑技术可以在不同物种中对目标基因进行定点敲除,并可实现特定基因片段置换,基因的定点插入等基因组靶向修饰。基因组编辑是一种精准和高效的基因工程方法,近年来快速发展并得到了广泛的应用,并将改变生物技术的现状。目前,基因组编辑在不同植物,特别是农作物中的技术体系已建立,初步展示了其在植物生物技术领域的巨大潜力。介绍了不同基因组编辑系统的工作原理,并对基因组编辑技术在植物研究中的应用及成功案例进行了综述,最后对基因组编辑在植物生物技术领域所面临的机遇与挑战进行了讨论。

References

[1]  Groth AC, Fish M, Nusse R, et al. Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31[J]. Genetics, 2004, 166(4):1775-1782.
[2]  Mahfouz MM, Li LX, Shamimuzzaman M, et al. De novo-engineered transcription activator-like effector(TALE)hybrid nuclease with novel DNA binding specificity creates double-strand breaks[J]. Proc Natl Acad Sci USA, 2011, 108(6):2623-2628.
[3]  Bibikova M, Beumer K, Trautman JK, et al. Enhancing gene targeting with designed zinc finger nucleases[J]. Science, 2003, 300(5620):764-764.
[4]  Durai S, Mani M, Kandavelou K, et al. Zinc finger nucleases:Custom-designed molecular scissors for genome engineering of plant and mammalian cells[J]. Nucleic Acids Res, 2005, 33(18):5978-5990.
[5]  Boch J, Scholze H, Schornack S, et al. Breaking the code of DNA bin-
[6]  ding specificity of TAL-type Ⅲ effectors[J]. Science, 2009, 326(5959):1509-1512.
[7]  Deng D, Yan C, Pan X, et al. Structural basis for sequence-specific recognition of DNA by TAL effectors[J]. Science, 2012, 335:720-723.
[8]  Grissa I, Vergnaud G, Pourcel C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats[J]. BMC Bioinformatics, 2007, 8(1):172.
[9]  Lloyd A, Plaisier C L, Carroll D, et al. Targeted mutagenesis using zinc-finger nucleases in Arabidopsis[J]. Proc Natl Acad Sci USA, 2005, 102:2232-2237.
[10]  Osakabe K, Osakabe Y, Toki S. Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases[J]. Proc Natl Acad Sci USA, 2010, 107(26):12034-12039.
[11]  Cermak T, Doyle EL, Christian M, et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting[J]. Nucleic Acids Res, 2011, 39(12):e82
[12]  Shan Q, Wang Y, Chen K, et al. Rapid and efficient gene modification in rice and Brachypodium using TALENs[J]. Mol Plant, 2013, 6(4):1365-1368.
[13]  Liang Z, Zhang K, Chen K, et al. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system[J]. J Genet Genom, 2014, 41(2):63-68.
[14]  Nekrasov V, Staskawicz B, Weigel D, et al. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease[J]. Nat Biotechnol, 2013, 31(8):691-693.
[15]  Mao Y, Zhang H, Xu N, et al. Application of the CRISPR-Cas system for efficient genome engineering in plants[J]. Mol Plant, 2013, 6(6):2008-2011.
[16]  Sugano SS, Shirakawa M, Takagi J, et al. CRISPR/Cas9 mediated targeted mutagenesis in the liverwort Marchantia polymorpha L[J]. Plant Cell Physiol, 2014, 55(3):475-481.
[17]  Jia H, Wang N. Targeted genome editing of sweet orange using Cas9/sgRNA[J]. PloS One, 2014, 9(4):e93806.
[18]  Xing HL, Dong L, Wang ZP, et al. Chen QJ. A CRISPR/Cas9 toolkit for multiplex genome editing in plants[J]. BMC Plant Biol, 2014. 14:327.
[19]  Xie K, Minkenberg B, Yang Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system[J]. Proc Natl Acad Sci USA, 2015, 112(11):3570-3575.
[20]  Qi Y, Li X, Zhang Y, et al. Targeted deletion and inversion of tandemly arrayed genes in Arabidopsis thaliana using zinc finger nucleases[J]. G3(Bethesda), 2013, 3(10):1707-1715.
[21]  Zhang Y, Zhang F, Li X, et al. TALENs enable efficient plant genome engineering[J]. Plant Physiol, 2013, 161(1):20-27.
[22]  Wright DA, Townsend JA, Winfrey RJ, et al. High-frequency homologous recombination in plants mediated by zinc-finger nucleases[J]. Plant J, 2005, 44(4):693-705.
[23]  Morbitzer R, R?mer P, Boch J, et al. Regulation of selected genome loci using de novo-engineered transcription activator-like effector(TALE)-type transcription factors[J]. Proc Natl Acad Sci USA, 2010, 107(50):21617-21622.
[24]  Piatek A, Ali Z, Baazim H, et al. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors[J]. Plant Biotechnol J, 2014. doi:10. 1111/pbi. 12284.
[25]  Curtin SJ, Voytas DF, Stupar RM. Genome engineering of crops with designer nucleases[J]. Plant Genome, 2012, 5(2):42-50.
[26]  Doyon Y, Vo TD, Mendel MC, et al. Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures[J]. Nat Methods, 2011, 8(1):74-79.
[27]  Gaj T, Guo J, Kato Y, et al. Targeted gene knockout by direct delivery of zinc-finger nuclease proteins[J]. Nat Methods, 2012, 9(8):805-807.
[28]  Ledford H. US regulation misses some GM crops[J]. Nature, 2013, 500(7463):389-390.
[29]  Kilby NJ, Snaith MR, Murray JA. Site-specific recombinases:tools for genome engineering[J]. Trends Genet, 1993, 9(12):413-421.
[30]  Chen YT, Hou PS, Ku AT, et al. PiggyBac transposon mediated, reversible gene transfer in human embryonic stem cells[J]. Stem Cells Dev, 2010, 19(6):763-671.
[31]  Monetti C, Nishino K, Zhang P, et al. PhiC31 integrase facilitates genetic approaches combining multiple recombinases[J]. Methods, 2011, 53(4):380-385.
[32]  Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes:zinc finger fusions to Fok I cleavage domain[J]. Proc Natl Acad Sci USA, 1996, 93(3):1156-1160.
[33]  Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors[J]. Science, 2009, 326(5959):1501-1501.
[34]  Mahfouz MM, Li L, Shamimuzzaman M, et al. De novo-engineered transcription activator-like effector(TALE)hybrid nuclease with novel DNA binding specificity creates double-strand breaks[J]. Proc Natl Acad Sci USA, 2011, 108:2623-2628.
[35]  Godde JS, Bickerton A. The repetitive DNA elements called CRI-SPRs and their associated genes:evidence of horizontal transfer among prokaryotes[J]. Journal of Molecular Evolution, 2006, 62:718-729.
[36]  Sapranauskas R, Gasiunas G, Fremaux C, et al. The Streptococcus thermophiles CRISPR/Cas system provides immunity in Escherichia coli[J]. Nucleic Acids Res, 2011, 39(21):9275-9282.
[37]  Gasiunas G, Barrangou R, Horvath P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. Proc Natl Acad Sci USA, 2012, 109:2579-2586.
[38]  Zhang F, Maeder ML, Unger-Wallace E, et al. High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases[J]. Proc Natl AcadSci USA, 2010, 107:12028-12033.
[39]  Curtin SJ, Zhang F, Sander JD, et al. Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases[J]. Plant Physiol, 2011, 156(2):466-473.
[40]  Shukla VK, Doyon Y, Miller JC, et al. Precise genome modification in the crop species Zea mays using zinc-finger nucleases[J]. Nature, 2009, 459(7245):437-441.
[41]  Li T, Liu B, Spalding M H, et al. High-efficiency TALEN-based gene editing produces disease-resistant rice[J]. Nat Biotechnol, 2012, 30:390-392.
[42]  Haun W, Coffman A, Clasen BM, et al. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family[J]. Plant Biotechnol J, 2014, 12(7):934-940.
[43]  Wang Y, Cheng X, Shan Q, et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew[J]. Nat Biotechnol, 2014, 32(9):947-951.
[44]  Li J F, Norville JE, Aach J, et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9[J]. Nat Biotechnol, 2013, 31(8):688-691.
[45]  Shan Q, Wang Y, Li J, et al. Targeted genome modification of crop plants using a CRISPR-Cas system[J]. Nat Biotechnol, 2013, 31(8):686-688.
[46]  Brooks C, Nekrasov V, Lippman ZB, et al. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system[J]. Plant Physiol, 2014, 166(3):1292-1297.
[47]  Upadhyay SK, Kumar J, Alok A, et al. RNA guided genome editing for target gene mutations in wheat[J]. G3(Bethesda), 2013, 3(12):2233-2238.
[48]  Shan Q, Zhang Y, Chen K, et al. Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology[J]. Plant Biotechnol J, 2015. doi:10. 1111/pbi. 12312.
[49]  Osakabe K, Endo M, Toki S. Chapter I-1. 6:DNA double-strand breaks and homologous recombination in higher plants[M]//Quingyao. Plant Mutagenesis - Principles and Applications. Greece:The Smiling Hippo, 2012:71-80.
[50]  Townsend JA, Wright DA, Winfrey RJ, et al. High-frequency modification of plant genes using engineered zinc-finger nucleases[J]. Nature, 2009, 459(7245):442-445.
[51]  Weinthal DM, Taylor RA, Tzfira T. Nonhomologous end joining-mediated gene replacement in plant cells[J]. Plant Physiol, 2013, 162(1):390-400.
[52]  Cai CQ, Doyon Y, Ainley WM, et al. Targeted transgene integration in plant cells using designed zinc finger nucleases[J]. Plant Mol Biol, 2009, 69(6):699-709.
[53]  Liu W, Rudis MR, Peng Y, et al. Synthetic TAL effectors for targeted enhancement of transgene expression in plants[J]. Plant Biotechnol J, 2013, 12(4):436-446.
[54]  Jones HD. Regulatory uncertainty over genome editing[J]. Nature Plants, 2015, 1(1). doi:10. 1038/nplants. 2014. 11.
[55]  Goodman RE, Tetteh AO. Suggested improvements for the allergenicity assessment of genetically modified plants used in foods[J]. Curr Allergy Asthma Rep, 2011, 11(4):317-324.
[56]  Fu Y, Sander JD, Reyon D, et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs[J]. Nat Biotechnol, 2014, 32(3):279-284.
[57]  Cai Y, Bak RO, Mikkelsen JG. Targeted genome editing by lentiviral protein transduction of zinc-finger and TAL-effector nucleases[J]. ELife, 2014, 3. e01911.
[58]  Waltz E. Tiptoeing around transgenics[J]. Nature Biotechnology, 2012, 30(3):215-217.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133