全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

植物挥发性有机物合成研究进展

DOI: 10.13560/j.cnki.biotech.bull.1985.2015.04.003, PP. 17-24

Keywords: 挥发性有机物,合成,代谢,植物

Full-Text   Cite this paper   Add to My Lib

Abstract:

植物挥发性有机物与人类生产和生活密切相关。在农业研究方面,植物挥发性有机物具有吸引传粉昆虫,抵御生物和非生物胁迫,介导作物之间信息交流,赋予果实特征风味等重要作用。综述了萜类化合物、苯/苯丙烷类化合物、脂肪酸衍生物和氨基酸衍生物等4类挥发性有机物的合成研究现状,并提出了今后应开展的工作与方法,旨在为进一步开展本领域研究提供有用信息。

References

[1]  Knudsen JT, Eriksson R, Gershenzon J, et al. Diversity and distribution of floral scent[J]. Botanical Review, 2006, 72:1-120.
[2]  Hiltpold I, Turlings TCJ. Manipulation of chemically mediated interactions in agricultural soils to enhance the control of crop pests and to improve crop yield[J]. Journal of Chemical Ecology, 2012, 38:641-650.
[3]  Heil M, Karban R. Explaining evolution of plant communication by airborne signals[J]. Trends in Ecology & Evolution, 2010, 25(3):137-144.
[4]  宋秀华, 李传荣, 许景伟, 王超. 元宝枫叶片挥发物成分及其季节差异[J]. 园艺学报, 2014, 41(5):915-924.
[5]  Mc Garvey DJ, Croteau R. Terpenoid metabolism[J]. Plant Cell, 1995, 7:1015-1026.
[6]  Pulido P, Perello C, Rodriguez-concepcion M. New insights into plant isoprenoid metabolism[J]. Molecular Plant, 2012, 5:964-967.
[7]  Oliver DJ, Nikolau BJ, Wurtele ES. Acetyl-CoA life at the metabolic nexus[J]. Plant Science, 2009, 176:597-601.
[8]  Andriotis VM, Kruger NJ, Pike MJ, et al. Plastidial glycolysis in developing Arabidopsis embryos[J]. New Phytologist, 2010, 185:649-662.
[9]  Bayer RG, Stael S, Csaszar E, et al. Mining the soluble chloroplast proteome by affinity chromatography[J]. Proteomics, 2011, 11:1287-1299.
[10]  Nakamura A, Shimada H, Masuda T, et al. Two distinct isopentenyl diphosphate isomerases in cytosol and plastid are differentially induced by environmental stresses in tobacco[J]. FEBS Letters, 2001, 506:61-64.
[11]  Hemmerlin A, Hoeffler JF, Meyer O, et al. Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells[J]. Journal of Biological Chemistry, 2003, 278:26666-26676.
[12]  Dudareva N, Andersson S, Orlova I, et al. The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers[J]. Proceedings of the National Academy of Sciences, USA, 2005, 102:933-938.
[13]  Hampel D, Mosandl A, Wüst M. Biosynthesis of mono- and sesquiterpenes in carrot roots and leaves(Daucus carota L. ):metabolic cross talk of cytosolic mevalonate and plastidial methylerythritol phosphate pathways[J]. Phytochemistry, 2005, 66:305-311.
[14]  Tholl D, Chen F, Petri J, et al. Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers[J]. Plant Journal, 2005, 42:757-771.
[15]  Sallaud C, Rontein D, Onillon S, et al. A novel pathway for sesquiterpene biosynthesis from Z, Z-farnesyl pyrophosphate in the wild tomato Solanum habrochaites[J]. Plant Cell, 2009, 21:301-317.
[16]  Eduardo I, Chietera G, Pirona R, et al. Genetic dissection of aroma volatile compounds from the essential oil of peach fruit:QTL analysis and identification of candidate genes using dense SNP maps[J]. Tree Genetics & Genomes, 2013, 1:189-204.
[17]  Simkin AJ, Schwartz SH, Auldridge M, et al. The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles b-ionone, pseudoionone, and geranylacetone[J]. Plant Journal, 2004, 40:882-892.
[18]  Tzin V, Malitsky S, Ben Zvimm, et al. Expression of a bacterial feedback-insensitive 3-deoxy-d-arabino-heptulosonate7-phosphate synthase of the shikimate pathway in arabidopsis elucidates potential metabolic bottlenecks between primary and secondary metabolism[J]. New Phytologist, 2012, 194:430-439.
[19]  Long MC, Nagegowda DA, Kaminaga Y, et al. Involvement of snapdragon benzaldehyde dehydrogenase in benzoic acid biosynthesis[J]. Plant Journal, 2009, 59:256-265.
[20]  D’auria JC, Pichersky E, Schaub A, et al. Characterization of a BAHD acyltransferase responsible for producing the green leaf volatile(Z)-3-hexen-1-ylacetate in Arabidopsis thaliana[J]. Plant Journal, 2007, 49:194-207.
[21]  Vassao DG, Gang DR, Koeduka T, et al. Chavicol formation in sweet basil(Ocimum basilicum):cleavage of an esterified C9 hydroxyl group with NAD(P)H-dependent reduction[J]. Organic and Biomolecular Chemistry, 2007, 4:2733-2744.
[22]  Gang DR, Lavid N, Zubieta C, et al. Characterization of phenylpropene O-methyltransferases from sweet basil:facile change of substrate specificity and convergent evolution within a plant O-methyltransferase family[J]. Plant Cell, 2002, 14:505-519.
[23]  Tieman DM, Taylor MG, Schauer N, et al. Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde[J]. Proceedings of the National Academy of Sciences, USA, 2006, 103:8287-8292.
[24]  Feussner I, Wasternack C. The lipoxygenase pathway[J]. Annual Review of Plant Biology, 2002, 53:275-297.
[25]  Zhang B, Chen K, Bowen J, et al. Differential expression within the LOX gene family in ripening kiwifruit[J]. Journal of Experimental Botany, 2006, 57(14):3825-3836.
[26]  Wu J, Wang ZW, Shi ZB, et al. The genome of pear(Pyrus bretschneideri Rehd. )[J]. Genome Research, 2013, 23(2):396-408.
[27]  Raguso RA. Wake up and smell the roses:the ecology and evolution of floral scent[J]. Annual Review of Ecology, Evolution, and Systematics, 2008, 39:549-569.
[28]  Huang M, Sanchez-moreiras AM, Abel C, et al. The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene(E)-b-caryophyllene, is a defense against a bacterial pathogen[J]. New Phytologist, 2012, 193:997-1008.
[29]  Husain Q. Handbook of fruit and vegetable flavours[M]. New Jersey:John Wiley & Sons, Inc, 2010.
[30]  Dudareva N, Klempien A, Muhlemann JK, et al. Biosynthesis, function and metabolic engineering of plant volatile organic compounds[J]. New Phytologist, 2013, 198(1):16-32.
[31]  Hsieh MH, Chang CY, Hsu SJ, et al. Chloroplast localization of methylerythritol 4-phosphate pathway enzymes and regulation of mitochondrial genes in IspD and IspE albino mutants in Arabidopsis[J]. Plant Molecular Biology, 2008, 66:663-673.
[32]  Lange BM, Rujan T, Martin W, et al. Isoprenoid biosynthesis:the evolution of two ancient and distinct pathways across genomes[J]. Proceedings of the National Academy of Sciences, USA, 2000, 97:13172-13177.
[33]  Ahumada I, Cairo A, Hemmerlin A, et al. Characterisation of the gene family encoding acetoacetyl-CoA thiolase in Arabidopsis[J]. Functional Plant Biology, 2008, 35:1100-1111.
[34]  Joyard J, Ferro M, Masselon C, et al. Chloroplast proteomics highli-ghts the subcellular compartmentation of lipid metabolism[J]. Progress in Lipid Research, 2010, 49:128-158.
[35]  Wise ML, Croteau R. Monoterpene biosynthesis[M]//Cane DD, ed. Comprehensive natural products chemistry:isoprenoids including carotenoids and steroids. Amsterdam, the Netherlands:Elsevier, 1999:97-153.
[36]  Guirimand G, Guihur A, Phillips MA, et al. A single gene encodes isopentenyl diphosphate isomerase isoforms targeted to plastids, mitochondria and peroxisomes in Catharanthus roseus[J]. Plant Molecular Biology, 2012, 79:443-459.
[37]  Laule O, Furholz A, Chang HS, et al. Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences, USA, 2003, 100:6866-6871.
[38]  Degenhardt J, K?llner TG, Gershenzon J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants[J]. Phytochemistry, 2009, 70:1621-1637.
[39]  Gutensohn M, Nagegowda DA, Dudareva N. Involvement of compartmentalization in monoterpene and sesquiterpene biosynthesis in plants[M]//Bach TJ, Rohmer M, eds. Isoprenoid synthesis in plants and microorganisms. New York, NY, USA:Springer, 2013:155-169.
[40]  Bohlmann J, Meyer-gauen G, Croteau R. Plant terpenoid synthases:molecular biology and phylogenetic analysis[J]. Proceedings of the National Academy of Sciences USA, 1998, 95:4126-4133.
[41]  Winterhalter P, Rouseff R. Carotenoid-derived aroma compounds:an introduction[M]//Winterhalter P, Rouseff R, eds. Carotenoid-derived aroma compounds[J]. Washington, DC, USA:American Chemical Society, 2001:1-17.
[42]  Ibdah M, Azulay Y, Portnoy V, et al. Functional characterization of CmCCD1, a carotenoid cleavage dioxygenase from melon[J]. Phytochemistry, 2006, 67:1579-1589.
[43]  Maeda H, Dudareva N. The shikimate pathway and aromatic amino acid biosynthesis in plants[J]. Annual Review of Plant Biology, 2012, 63:73-105.
[44]  Van Moerkercke A, Schauvinhold I, Pichersky E, et al. A plant thiolase involved in benzoic acid biosynthesis and volatile benzenoid production[J]. Plant Journal, 2009, 60:292-302.
[45]  D’auria JC. Acyltransferases in plants:a good time to be BAHD[J]. Current Opinion In Plant Biology, 2006, 9:331-340.
[46]  Koeduka T, Fridman E, Gang DR, et al. Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester[J]. Proceedings of the National Academy of Sciences USA, 2006, 103:10128-10133.
[47]  Dexter R, Qualley A, Kish CM, et al. Characterization of a petunia acetyltransferase involved in the biosynthesis of the floral volatile isoeugenol[J]. Plant Journal, 2007, 49:265-275.
[48]  Koeduka T, Louie GV, Orlova I, et al. The multiple phenylpropene synthases in both Clarkia breweri and Petunia hybrida represent two distinct protein lineages[J]. Plant Journal, 2008, 54:362-374.
[49]  Kaminaga Y, Schnepp J, Peel G, et al. Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxy lationan doxidation[J]. Journal of Biological Chemistry, 2006, 281:23357-23366.
[50]  Tieman DM, Loucas HM, Kim JY, et al. Tomato phenylacetaldehyde reductases catalyze the last step in the synthesis of the aroma volatile 2-phenylethanol[J]. Phytochemistry, 2007, 68:2660-2669.
[51]  Farhi M, Lavie O, Masci T, et al. Identification of rose phenylacetaldehyde synthase by functional complementation in yeast[J]. Plant Molecular Biology, 2010, 72:235-245.
[52]  Gonda I, Bar E, Portnoy V, et al. Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit[J]. Journal of Experimental Botany, 2010, 61:1111-1123.
[53]  Chen G, Hackett R, Walker D, et al. Identification of a specific isoform of tomato lipoxygenase(TomloxC)involved in the generation of fatty acid-derived flavor compounds[J]. Plant Physiology, 2004, 136(1):2641-2651.
[54]  Song M, Kim D, Lee S. Isolation and characterization of a jasmonic acid carboxyl methyltransferase gene from hot pepper(Capsicum annuum L. )[J]. Journal of Plant Biology, 2005, 48:292-297.
[55]  秦改花. 梨果实挥发性芳香物质的分析和生物合成研究[D]. 南京:南京农业大学, 2012.
[56]  Dickinson JR, Harrison SJ, Dickinson JA, et al. An investigation of the metabolism of isoleucine to active amyl alcohol in Saccharomyces cerevisiae[J]. Journal of Biological Chemistry, 2000, 275:10937-10942.
[57]  Beekwilder J, Alvarez-huerta M, Neef E, et al. Functional characterization of enzymes forming volatile esters from strawberry and banana[J]. Plant Physiology, 2004, 135:1865-1878.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133