全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

CYC类基因在被子植物花发育中的研究进展

DOI: 10.13560/j.cnki.biotech.bull.1985.2015.04.002, PP. 10-16

Keywords: CYC类基因,花对称性,TCP基因家族,进化

Full-Text   Cite this paper   Add to My Lib

Abstract:

CYCLOIDEA(CYC)类基因属于TCP基因家族成员,在花发育过程中具有重要作用。CYC类基因在被子植物进化过程中发生基因复制事件,形成CYC1、CYC2和CYC3三大分支,其中CYC2分支成员在花对称性形成方面具有主要调控作用。CYC1和CYC3分支成员开展研究较少。综述了国内外CYC类基因的研究现状及其存在问题,并对CYC类基因的研究前景做了展望。

References

[1]  Zhao D, Yu Q, Chen C, et al. Genetic control of reproductive meristems[M]// McManus MT, Veit B, eds. Meristematic tissues in plant growth and development. Sheffield:Sheffield Academic Press, 2001:89-142.
[2]  Kaufmann K, Melzer S, Theissen G. MIKC-type MADS-domain proteins:Structural modularity, protein interactions and network evolution in land plants[J]. Gene, 2005, 347(2):183-198.
[3]  Luo D, Carpenter R, Vincent C, et al. Origin of floral asymmetry in Antirrhinum[J]. Nature, 1996, 383(6603):794-799.
[4]  Cubas P, Lauter N, Doebley J, et al. The TCP domain:a motif found in proteins regulating plant growth and development[J]. Plant J, 1999, 18(2):215-222.
[5]  Feng XZ, Zhao Z, Tian ZX, et al. Control of petal shape and floral zygomorphy in Lotus japonicas[J]. Proc Natl Acad Sci USA, 2006, 103(13):4970-4975.
[6]  Hileman LC, Cubas P. An expanded evolutionary role for flower symmetry genes[J]. J Biol, 2009, 8(10):90.
[7]  Preston JC, Hileman LC. Developmental genetics of floral symmetry evolution[J]. Trends Plant Sci, 2009, 14(3):147-154.
[8]  Kosugi S, Ohanshi Y. PCF1 and PCF2 specifically bind to cis elements in the rice PROLIFERATING CELL NUCLEAR ANTIGEN gene[J]. Plant Cell, 1997, 9(9):1607-1619.
[9]  Cubas P. Floral zygomorphy, the recurring evolution of successful trait[J]. Bioessays, 2004, 26(11):1175-1184.
[10]  Cubas P. Role of TCP genes in the evolution of morphological characters in angiosperms[M]//Hawkins JA, Cronk QCB, Bateman RM, eds. Developmental genetics and plant evolution. London, Taylor and Francis:CRC Press, 2002:247-266.
[11]  Howarth DG and Donoghue MJ. Phylogenetic analysis of the “ECE”(CYC/TB1)clade reveals duplications predating the core eudicots[J]. Proc Natl Acad Sci USA, 2006, 103(24):9101-9106.
[12]  Navaud O, Dabos P, Carnus E, et al. TCP transcription factors predate the emergence of land plants[J]. J Mol Evol, 2007, 65(1):23-33.
[13]  Vandenbussche M, Theissen G, Van de Peer Y, et al. Structural diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations[J]. Nucleic Acids Res, 2003, 31(15):4401-4409.
[14]  Taylor JS, Raes J. Duplication and divergence:the evolution of new genes and old ideas[J]. Annu Rev Genet, 2004, 38:615-643.
[15]  Carlson SE, Howarth DG, Donoghue MJ. Diversification of CYCLOIDEA-like genes in Dipsacaceae(Dipsacales):implications for the evolution of capitulum inflorescences[J]. BMC Evol Biol, 2011, 11:325.
[16]  Mondragon-Palomino M, Trontin C. High time for a roll call:gene duplication and phylogenetic relationships of TCP-like genes in monocots[J]. Ann Bot London, 2011, 107(9):1533-1544.
[17]  Citerne H, Le Guilloux M, Sannier J, et al. Combining phylogenetic and syntenic analyses for understanding the evolution of TCP ECE genes in eudicots[J]. PLoS One, 2013, 8(9):e74803.
[18]  Florian J, Guillaume C, Martine LG, et al. Specific duplication and dorsoventrally asymmetric expression patterns of cycloidea-like genes in zygomorphic species of ranunculaceae[J]. PLoS One, 2014, 9(4):e95727.
[19]  Endress PK. The immense diversity of floral monosymmetry and asymmetry across angiosperms[J]. Botan Rev, 2012, 78:345-397.
[20]  Green AA, Kennaway R, Hanna AI, et al. Genetic control of organ shape and tissue polarity[J]. PLoS Biol, 2010, 8(11):e1000537.
[21]  Chapman MA, Leebens-Mack JH, Burke JM. Positive selection and expression divergence following gene duplication in the sunflower CYCLOIDEA gene family[J]. Mol Biol Evol, 2008, 25(7):1260-1273.
[22]  Chapman MA, Tang SX, Draeger D, et al. Genetic analysis of floral symmetry in Van Gogh’s sunflowers reveals independent recruitment of CYCLOIDEA genes in the Asteraceae[J]. PLoS Genet, 2012, 8(3):e1002628.
[23]  Gao Q, Tao JH, Yan D et al. Expression differentiation of CYC-like floral symmetry genes correlated with their protein sequence divergence in Chirita heterotricha(Gesneriaceae)[J]. Dev Genes Evol, 2008, 218(7):341-351.
[24]  Song CF, Lin QB, Liang RH, et al. Expressions of ECE-CYC2 clade genes relating to abortion of both dorsal and ventral stamens in Opithandra(Gesneriaceae)[J]. BMC Evol Biol, 2009, 9:244.
[25]  Yang X, Pang HB, Liu BL, et al. Evolution of double positive autoregulatory feedback loops in CYCLOIDEA2 clade genes is associated with the origin of floral zygomorphy[J]. Plant Cell, 2012, 24(5):1834-1847.
[26]  Wang Z, Luo YH, Li X, et al . Genetic control of floral zygomorphy in pea(Pisum sativum L. )[J]. Proc Natl Acad Sci USA, 2008, 105(30):10414-10419.
[27]  K?lsch A, Gleissberg S. Diversification of CYCLOIDEA-like TCP genes in the basal eudicot families Fumariaceae and Papaveraceae s. str[J]. Plant Biol, 2006, 8(5):680-687.
[28]  Damerval C, Citerne H, Le Guilloux M, et al. Asymetric morphogenetic cues along the transverse plane:shift from dissymmetry to zygomorphy in the flower of Fumarioideae[J]. Am J Bot, 2013, 100(2):391-402.
[29]  Busch A, Zachgo S. Control of corolla monosymmetry in the Brassicaceae Iberis amara[J]. Proc Natl Acad Sci USA, 2007, 104(42):16714-16719.
[30]  Zhang WH, Kramer EM, Davis CC. Floral symmetry genes and the origin and maintenance of zygomorphy in a plant-pollinator mutualism[J]. Proc Natl Acad Sci USA, 2010, 107(14):6388-6393.
[31]  Zhang WH, Steinmann VW, Nikolov L. et al. Divergent genetic mechanisms underlie reversals to radial floral symmetry from diverse zygomorphic flowered ancestors[J]. Frontiers in Plant Science, 2013, 4(302):1-12.
[32]  Bartlett ME, Specht CD. Changes in expression pattern of the teosinte branched1-like genes in the Zingiberales provide a mechanism for evolutionary shifts in symmetry across the order[J]. Am J Bot, 2011, 98(2):227-243.
[33]  Mondragon-Palomino M, Theissen G. Why are orchid flowers so diverse? reduction of evolutionary constraints by paralogues of class B floral homeotic genes[J]. Ann Bot, 2009, 104(3):583-594.
[34]  Citerne HL, Pennington RT, Cronk QC. An apparent reversal in floral symmetry in the Legume Cadia is a homeotic transformation[J]. Proc Natl Acad Sci USA, 2006, 103(32):12017-12020.
[35]  Cubas P, Coen E, Zapater JM. Ancient asymmetries in the evolution of flowers[J]. Curr Biol, 2001, 11(13):1050-1052.
[36]  Guo Z, Fujioka S, Blancaflor EB, et al. TCP1 modulates brassinosteroid biosynthesis by regulating the expression of the key biosynthetic gene DWARF4 in Arabidopsis thaliana[J]. Plant Cell, 2010, 22(4):1161-1173.
[37]  李家洋. 植物花对称性发育研究的进展:从理论到应用的双重价值[J]. 分子植物育种, 2006, 4(6):751-752.
[38]  Carroll SB, Prud’Homme B, Gompel N. Regulating evolution[J]. Scientific American, 2008, 298(5):60-67.
[39]  Carroll SB. Endless forms:the evolution of gene regulation and morphological diversity[J]. Cell, 2000, 101(6):577-580.
[40]  Soltis DE, Soltis PS, Albert VA, et al. Missing links:the genetic architecture of flowers and floral diversification[J]. Trends Plant Sci, 2002, 7(1):22-31.
[41]  Doebley J. Genetics, development and plant evolution[J]. Curr Opin Genet Dev, 1993, 3(6):865-872.
[42]  Doebley J, Lukens L. Transcriptional regulators and the evolution of plant form[J]. Plant Cell, 1998, 10(7):1075-1082.
[43]  Luo D, Carpenter R, Copsey L, et al. Control of organ asymmetry in flowers of Antirrhinum[J]. Cell, 1999, 99(4):367-376.
[44]  Busch A, Zachgo S. Flower symmetry evolution:towards understanding the abominable mystery of angiosperm radiation[J]. Bioessays, 2009, 31(11):1181-1190.
[45]  Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize[J]. Nature, 1997, 386(6624):485-488.
[46]  Martin-Trillo M, Cubas P. TCP genes:a family snapshot ten years later[J]. Trends Plant Sci, 2009, 15:31-39.
[47]  Howarth DG, Donoghue MJ. Duplication in CYC-like genes from dipsacales correlates with floral form[J]. Int J Plant Sci, 2005, 166(3):357-370.
[48]  Lynch M, Conery JS. The evolutionary fate and consequences of duplicate genes[J]. Science, 2000, 290(5494):1151-1155.
[49]  Ohta T. Time for acquiring a new gene by duplication[J]. Proc Natl Acad Sci USA, 1988, 85(10):3509-3512.
[50]  Lynch M, Force A. The probability of duplicate gene preservation by subfunctionalization[J]. Genetics, 2000, 154(1):459-473.
[51]  Vandenbussche M, Zethof J, Royaert S, et al. The duplicated B-class heterodimer model:whorl-specific effects and complex genetic interations in Petunia hybrid flower development[J]. Plant Cell, 2004, 16(3):741-754.
[52]  Moore RC, Purugganan MD. The evolutionary dynamics of plant duplicate genes[J]. Curr Opin Plant Biol, 2005, 8(2):122-128.
[53]  Howarth DG, Martins T, Chimney E, et al. Diversification of CYCLOIDEA expression in the evolution of bilateral flower symmetry in Caprifoliaceae and Lonicera(Dipsacales)[J]. Ann Bot London, 2011, 107(9):1521-1532.
[54]  T?htiharju S, Rijpkema AS, Vetterli A, et al. Evolution and diversification of the CYC/TB1 gene family in Asteraceae—a comparative study in gerbera(Mutisieae)and sunflower(Heliantheae)[J]. Mol Biol Evol, 2012, 29(4):1155-1166.
[55]  Endress PK. Evolution of floral symmetry[J]. Curr Opin Plant Biol, 2001, 4(1):86-91.
[56]  Citerne H, Jabbour F, Nadot S, et al. The evolution of floral symm-etry[M]// Kader JC, Delseny M, eds. Advances in Botanical Res-earch. United States:Academic Press Inc, 2010, 54:85-137.
[57]  Cui ML, Copsey L, Green AA et al. Quantitative control of organ shape by combinatorial gene activity[J]. PLoS Biol, 2010, 8(11):e1000538.
[58]  Broholm SK, Tahtiharju S, Laitinen RA, et al. A TCP domain transcription factor controls flower type specification along the radial axis of the Gerbera(Asteraceae)inflorescence[J]. Proc Natl Acad Sci USA, 2008, 105(26):9117-9122.
[59]  Kim M, Cui ML, Cubas P, et al. Regulatory genes control a key morphological and ecological trait transferred between species[J]. Science, 2008, 322(5904):1116-1119.
[60]  Zhou XR, Wang YZ, Smith JF, et al. Altered expression patterns of TCP and MYB genes relating to the floral developmental transition from initial zygomorphy to actinomorphy in Bournea(Gesneriaceae)[J]. New Phytol, 2008, 178(3):532-543.
[61]  Du ZY, Wang YZ. Significance of RT-PCR expression patterns of CYC-like genes in Oreocharis benthamii(Gesneriaceae)[J]. J S E, 2008, 46(1):23-31.
[62]  Pang HB, Sun QW, He SZ, et al. Expression pattern of CYC-like genes relating to a dorsalized actinomorphic flower in Tengia(Gesneriaceae)[J]. J S E, 2010, 48(5):309-317.
[63]  Citerne HL, Luo D, Pennington RT, et al. A phylogenomic investig-ation of CYCLOIDEA-like TCP genes in the Leguminosae[J]. Plant Physiol, 2003, 131(3):1042-1053.
[64]  Xu SL, Luo YH, Cai ZG, et al. Functional diversity of CYCLOID-EA-like TCP genes in the control of zygomorphic flower develo-pment in Lotus japonicus[J]. J Interg Plant Biol, 2013, 55(3):221-231.
[65]  Damerval C, Guilloux ML, Jager M, et al. Diversity and evolution of CYCLOIDEA-Like TCP genes in relation to flower development in Papaveraceae[J]. Plant Physiol, 2007, 143(2):759-772.
[66]  Busch A, Horn S, Muhlhausen A, et al. Corolla monosymmetry:evolution of a morphological novelty in the Brassicaceae family[J]. Mol Biol Evol, 2012, 29(4):1241-1254.
[67]  Zhang WH, Kramer EM, Davis CC. Similar genetic mechanisms underlie the parallel evolution of floral phenoltypes[J]. PLoS ONE, 2012, 7(4):e36033.
[68]  Yuan Z, Gao S, Xue DW. RETARDED PALEA1 controls palea development and floral zygomorphy in rice[J]. Plant Physiol, 2009, 149(1):235-244.
[69]  Preston JC, Hileman LC. Parallel evolution of TCP and B-class genes in Commelinaceae flower bilateral symmetry[J]. EvoDevo, 2012, 3:6.
[70]  Hileman LC. Bilateral flower symmetry-how, when and why?[J]. Curr Opin Plant Biol, 2014, 17:146-152.
[71]  Costa MMR, Fox S, Hanna AI, et al. Evolution of regulatory interactions controlling floral asymmetry[J]. Development, 2005, 132(22):5093-5101.
[72]  Cubas P, Vincent C, Coen E. An epigennetic mutation responsible for natural variation in floral symmetry[J]. Nature, 1999, 401(6749):157-161.
[73]  Koyama T, Sato F, Ohme-Takagi M. A role of TCP1 in the longitudinal elongation of leaves in Arabidopsis[J]. Biosci Biotechnol Biochem, 2010, 74(10):2145-2147.
[74]  Aguilar-Martínez JA, Poza-Carrión C, Cubas P. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds[J]. Plant Cell, 2007, 19:458-472.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133