全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基因工程和代谢工程在甜菊糖生产上应用进展

DOI: 10.13560/j.cnki.biotech.bull.1985.2015.09.002, PP. 8-14

Keywords: 甜叶菊,甜菊糖,甜味剂,代谢工程,遗传工程

Full-Text   Cite this paper   Add to My Lib

Abstract:

甜菊糖是由原产于南美的多年生草本植物甜叶菊所产生的一种糖苷。中国广西一带的甜茶树也产生类似的糖苷。它们作为一种低能量、高甜度的天然甜味剂近几年在欧美、日本及中国得到越来越普遍的利用。中国是世界上最大的甜叶菊种植国。近年来甜菊糖代谢途径中的酶蛋白和有关基因的分离以及甜叶菊转化体系的建立,为通过遗传和代谢工程提高甜菊糖产量和改变甜菊糖苷的组成奠定了基础,也为利用微生物和其他高生物量作物产生甜菊糖提供了新的途径。就甜叶菊的生产、甜菊糖的利用现状以及甜菊糖在植物体内的代谢途径进行了总结。

References

[1]  徐铮奎. 甜菊糖将迎来黄金时代[N]. 医学经济报, 2012-4-25.
[2]  DuBois GE, Stephenson RA. Diterpenoid sweeteners. Synthesis and sensory evaluation of stevioside analogues with improved organoleptic properties[J]. Journal of Medicinal Chemistry, 1985, 28(1):93-98.
[3]  Prakash I, Markosyan A, Bunders C. Development of next generation stevia sweetener:rebaudioside M[J]. Foods, 2014, 3(1):162-175.
[4]  Matsui M, Matsui K, ?Kawasaki Y, et al. Evaluation of the genotoxicity of stevioside and steviol using six in vitro and one in vivo mutagenicity assays[J]. Mutagenesis, 1996, 11(6):573-579.
[5]  Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes[J]. Nature Biotechnology, 2014, 32(4):347-355.
[6]  Chen J, Hou K, Qin P, et al. RNA-Seq for gene identification and transcript profiling of three Stevia rebaudiana genotypes[J]. BMC Genomics, 2014, 15:571.
[7]  Kamiya Y, Magome H, Nomura T, Yamaguchi S. Method for producing steviol synthetase gene and steviol:US, 20080271205[P]. 2008.
[8]  Guleria P, Yadav SK. Agrobacterium mediated transient gene silencing(AMTS)in Stevia rebaudiana:insights into steviol glycoside biosynthesis pathway[J]. PLoS One, 2013, 8(9):e74731.
[9]  Khan SA, Ur Rahman L, Shanker K, Singh M. Agrobacterium tumefaciens-mediated transgenic plant and somaclone production through direct and indirect regeneration from leaves in Stevia rebaudiana with their glycoside profile[J]. Protoplasma, 2014, 251(3):661-670.
[10]  Pezzuto JM, Compadre CM, Swanson SM, et al. Metabolically activated steviol, the aglycone of stevioside, is mutagenic[J]. Proceedings of the National Academy of Sciences of the United States of America, 1985, 82(8):2478-2482.
[11]  Procinska E, Bridges BA, Hanson JR. Interpretation of results with the 8-azaguanine resistance system in Salmonella typhimurium:no evidence for direct acting mutagenesis by 15-oxosteviol, a possible metabolite of steviol[J]. Mutagenesis, 1991, 6(2):165-167.
[12]  Goyal SK, Samsher, Goyal RK. Stevia(Stevia rebaudiana)a bio-sweetener:a review[J]. International Journal of Food Sciences and nNutrition, 2010, 61(1):1-10.
[13]  WHO. Safety evaluation of certain contaminants in food. Prepared by the Sixty-fourth meeting of the Joint FAO/WHO Expert Committee on Food Additives(JECFA)[J]. FAO Food and Nutrition Paper, 2006, 82:1-778.
[14]  WHO. Joint FAO/WHO Expert Committee on food additives[C]. Sixty-ninth Meeting, 2008.
[15]  EUFSA. EFSA evaluates the safety of steviol glycosides[R]. European Food Safety Authority, 2010.
[16]  Chatsudthipong V, Muanprasat C. Stevioside and related compounds:therapeutic benefits beyond sweetness[J]. Pharmacology & Therapeutics, 2009, 121(1):41-54.
[17]  Helliwell CA, Chandler PM, Poole A, et al. The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(4):2065-2070.
[18]  Guleria P, Masand S, Yadav SK. Overexpression of SrUGT85C2 from Stevia reduced growth and yield of transgenic Arabidopsis by influencing plastidial MEP pathway[J]. Gene, 2014, 539(2):250-257.
[19]  Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes[J]. Nature Biotechnology, 2014, 32(4):347-355.
[20]  Gupta P, Sharma S, Saxena S. Effect of salts(NaCl and Na2CO3)on callus and suspension culture of Stevia rebaudiana for steviol glycoside production[J]. Applied Biochemistry and Biotechnology, 2014, 172(6):2894-2906.
[21]  Madan S, Sayeed A, Singh GN, et al. Stevia rebaudiana(Bertoni):a review[J]. Indian Journal of Natural Products and Resources, 2010, 1(3):267-286.
[22]  Brandle JE, Telmer PG. Steviol glycoside biosynthesis[J]. Phytochemistry, 2007, 68(14):1855-1863.
[23]  Ye F, Yang RJ, Hua X, et al. Modification of steviol glycosides using α-amylase[J]. LWT-Food Science and Technology, 2014, 57(1):400-405.
[24]  Geuns JM. Stevioside[J]. Phytochemistry, 2003, 64(5):913-921.
[25]  Richman A, ?Swanson A, ?Humphrey T, et al. Functional genomics uncovers three glucosyltransferases involved in the synthesis of the major sweet glucosides of Stevia rebaudiana[J]. Plant J, 2005, 41(1):56-67.
[26]  Yang YH, Huang SZ, Han YL, et al. Base substitution mutations in uridinediphosphate-dependent glycosyltransferase 76G1 gene of Stevia rebaudiana causes the low levels of rebaudioside A:mutations in UGT76G1, a key gene of steviol glycosides synthesis[J]. Plant Physiol Biochem, 2014, 80:220-225.
[27]  USFDA. Agency Response Letter GRAS Notice No. GRN 000388[DB]. US Food and Drug Admininstration. 2012.
[28]  Hsieh MH, Chan P, Sue YM, et al. Efficacy and tolerability of oral stevioside in patients with mild essential hypertension:a two-year, randomized, placebo-controlled study[J]. Clinical Therapeutics, 2003, 25(11):2797-2808.
[29]  Anton SD, Martin CK, Han H, et al. Effects of stevia, aspartame, and sucrose on food intake, satiety, and postprandial glucose and insulin levels[J]. Appetite, 2010, 55(1):37-43.
[30]  Jain P, Kachhwaha S, Kothari S. Biotechnology and metabolic engineering of Stevia rebaudiana(BERT. )Bertoni:Perspective and possibilities[J]. International Journal of Life Sciences Biotechnology and Phama Research, 2014, 3(3):15-37.
[31]  Lozano-Juste J, Cutler SR. Plant genome engineering in full bloom[J]. Trends in Plant Science, 2014, 19(5):284-287.
[32]  Philippe RN, De Mey M, Anderson J, Ajikumar PK. Biotechnologic-al production of natural zero-calorie sweeteners[J]. Curr Opin Biotechnol, 2014, 26:155-161.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133