全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

水稻miR169o及其靶基因OsNF-YAs对缺水胁迫期表达模式

DOI: 10.13560/j.cnki.biotech.bull.1985.2015.08.034, PP. 76-81

Keywords: miR169o,OsNF-YAs,水稻,干旱胁迫,表达模式

Full-Text   Cite this paper   Add to My Lib

Abstract:

MicroRNAs(miRNAs)是一类小的非编码RNA,在植物逆境胁迫应答中发挥重要的调控作用。miR169可受干旱胁迫诱导表达,而过表达miR169则可以增强植物对干旱的耐受性。然而,miR169及其靶基因NF-YAs在水稻干旱胁迫条件下的表达动态至今尚不清楚。对水稻进行不同时间缺水处理,用qRT-PCR法定量测定了水稻根、茎、叶组织中miR169o及其靶基因表达的动态变化。结果表明,随着缺水处理时间的增加,水稻不同组织中miR169o表达量总体上有升高趋势;而靶基因(NF-YA1、NF-YA2和NF-YA3)表达模式基本与miR169o的表达模式相反,但并不全部对应。推测在水稻干旱胁迫早期反应中,miR169o可能主要调控了部分特定靶基因的表达。此外,miR169o在水稻根、茎、叶组织中的表达和丰度存在着明显的差异,具有组织特异性。

References

[1]  Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2):281-297.
[2]  Sunkar R, Chinnusamy V, Zhu J, et al. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation[J]. Trends in Plant Science, 2007, 12(7):301-309.
[3]  Covarrubias AA, Reyes JL. Post-transcriptional gene regulation of salinity and drought responses by plant microRNAs[J]. Plant Cell Environ, 2010, 33(4):481-489.
[4]  Lundmark M, Korner CJ, Nielsen TH. Global analysis of microRNA in Arabidopsis in response to phosphate starvation as studied by locked nucleic acid-based microarrays[J]. Physiol Plant, 2010, 140(1):57-68.
[5]  Liu HH, Tian X, Li YJ, et al. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana[J]. RNA, 2008, 14(5):836-843.
[6]  Sorin C, Declerck M, Christ A, et al. A miR169 isoform regulates specific NF-YA targets and root architecture in Arabidopsis[J]. New Phytol, 2014, 202(4):1197-1211.
[7]  潘雅姣, 傅彬英, 王迪, 等. 水稻干旱胁迫诱导DNA甲基化时空变化特征分析[J]. 中国农业科学, 2009, 42:3009-3018.
[8]  Zhao B, Ge L, Liang R, et al. Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor[J]. BMC Mol Biol, 2009, 10:29.
[9]  Hoagland DR, Arnon DI. The water-culture method for growing plants without soil[M]. 2nd ed. Circular. California Agricultural Experiment Station, 1950:347.
[10]  Yang B, Ma HY, Wang XM, et al. Improvement of nitrogen accumulation and metabolism in rice(Oryza sativa L. )by the endophyte Phomopsis liquidambari[J]. Plant Physiol Biochem, 2014, 82:172-182.
[11]  Jia X, Wang WX, Ren L, et al. Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana[J]. Plant Molecular Biology, 2009, 71(1-2):51-59.
[12]  Daszkowska-Golec A, Szarejko I. The molecular basis of ABA-mediated plant response to drought[J]. Agricultwre and Biological Scieurs, 2013:103-133.
[13]  Wilkinson S, Davies WJ. ABA-based chemical signalling:the co-ordination of responses to stress in plants[J]. Plant, Cell & Environment, 2002, 25(2):195-210.
[14]  Rogers K, Chen X. Biogenesis, turnover, and mode of action of plant microRNAs[J]. Plant Cell, 2013, 25(7):2383-2399.
[15]  Jones-Rhoades MW, Bartel DP, et al. MicroRNAs and their regula-tory roles in plants[J]. Annu Rev Plant Biol, 2006, 57:19-53.
[16]  Khraiwesh B, Zhu JK, Zhu J. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants[J]. Biochim Biophys Acta, 2012, 1819(2):137-48.
[17]  Zhao M, Ding H, Zhu JK, et al. Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis[J]. New Phytol, 2011, 190(4):906-915.
[18]  Li WX, Oono Y, et al. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance[J]. Plant Cell, 2008, 20(8):2238-2251.
[19]  Ni Z, Hu Z, Jiang Q, et al. GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress[J]. Plant Mol Biol, 2013, 82(1-2):113-129.
[20]  Xu MY, Zhang L, Li WW, et al. Stress-induced early flowering is mediated by miR169 in Arabidopsis thaliana[J]. J Exp Bot, 2014, 65(1):89-101.
[21]  Liu HJ, Chen LG, Zhu PP, et al. Effect of hyacinth mulching on rice(Oryza sativa L. )uptake and utilization of nitrogen[J]. Environmental Science, 2011, 32(5):1292-1298.
[22]  Rio DC, Ares M, Hannon GJ, et al. Purification of RNA using TRIzol(TRI reagent)[J]. Cold Spring Harbor Protocols, 2010(6):pdb. prot5439.
[23]  Livak KJ, Schmittgen TD. Analysis of relative gene expression data using Real-Time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4):402-408.
[24]  Liu Q, Zhang YC, Wang CY, et al. Expression analysis of phytohormone-regulated microRNAs in rice, implying their regulation roles in plant hormone signaling[J]. FEBS Letters, 2009, 583(4):723-728.
[25]  Zhao B, Liang R, Ge L, et al. Identification of drought-induced microRNAs in rice[J]. Biochem Biophys Res Commun, 2007, 354(2):585-590.
[26]  Jia W, Wang Y, et al. Salt-stress-induced ABA accumulation is more sensitively triggered in roots than in shoots[J]. Journal of Experimental Botany, 2002, 53(378):2201-2206.
[27]  Chaves MM, Maroco JP, Pereira JS. Understanding plant responses to drought—from genes to the whole plant[J]. Functional Plant Biology, 2003, 30(3):239-264.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133