全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

逆境胁迫下植物表观遗传机制的研究进展

, PP. 8-15

Keywords: 胁迫,DNA甲基化,组蛋白修饰,染色质重塑,非编码RNA

Full-Text   Cite this paper   Add to My Lib

Abstract:

植物着地固定生长不能主动逃避外界危害,只能依靠自身的一些响应机制来防御外界胁迫,表观遗传调控在这个响应机制中起着重要的作用,主要表现在DNA甲基化、组蛋白修饰、染色质重塑及非编码RNA。植物在遭受低温、高温、干旱、盐、重金属、病毒及激素等因素胁迫后,通过调节抗逆相关基因的表达来响应外界危害。综述表观遗传修饰在各种胁迫下的调控机制,为作物的抗逆研究提供理论依据。

References

[1]  Dyachenko OV, Zakharchenko NS, Shevchuk TV, et al. Effect of hy-permethylation of CCWGG sequences in DNA of Mesembryanthemum crystallinum plants on their adaptation to salt stress[J]. Bioche-mistry, 2006, 71(4):461-465.
[2]  Veiseth SV, Rahman MA, Yap KL, et al. The SUVR4 histone lysine methyltransferase binds ubiquitin and converts H3K9me1 to H3K9me3 on transposon chromatin in Arabidopsis[J]. PLoS Genet, 2011, 7(3):e1001325.
[3]  Karan R, DeLeon T, Biradar H, et al. Salt stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genotypes[J]. PLoS One, 2012, 7(6):e40203.
[4]  Finnegan EJ. Epialleles-a source of random variation in times of stress[J]. Curr Opin Plant Biol, 2001, 5(2):101-106.
[5]  Chinnusamy V, Zhu JK. Epigenetic regulation of stress responses in plants[J]. Curr Opin Plant Biol, 2009, 12(2):133-139.
[6]  Zhang K, Sridhar VV, Zhu JH, et al. Distinctive core histone post-translational modification patterns in Arabidopsis thaliana[J]. PLoS One, 2007, 2(11):e1210.
[7]  Tittel-Elmer M, Bucher B, Broger L, et al. Stress-induced activation of heterochromatic transcription[J]. PLoS Genet, 2010, 6(10):e1001175.
[8]  Finnegan EJ, Kovac KA. Plant DNA methyltransferases[J]. Plant Mol Biol, 2000, 43(2-3):189-201.
[9]  Bhardwaj J, Mahajan M, Yadav SK. Comparative analysis of DNA methylation polymorphism in drought sensitive(HPKC2)and tolerant(HPK4)genotypes of horse gram(Macrotyloma uniflorum)[J]. Biochem Genet, 2013, 51(7-8):493-502.
[10]  Gayacharan, Joel AJ. Epigenetic?responses to drought?stress?in rice(Oryza sativa L.)[J]. Physiol Mol Biol Plants, 2013, 19(3):379-87.
[11]  Wang WS, Pan YJ, Zhao XQ, et al. Drought-induced site-specific DNA methylation and its association with drought tolerance in rice(Oryza sativa L.)[J]. J Exp Bot, 2011, 62(6):1951-1960.
[12]  Angers B, Castonguay E, Massicotte R. Environmentally induced phenotypes and DNA methylation:how to deal with unpredictable conditions until the next generation and after[J]. Mol Ecol, 2010, 19(7):1283-1295.
[13]  Wada Y, Miyamoto K, Kusano T, et al. Association between up-regulation of stress-responsive genes and hypomethylation of genomic DNA in tobacco plants[J]. Mol Genet Genomics, 2004, 271(6):658-666.
[14]  Muthamilarasan M, Prasad M. Plant innate immunity:an updated insight into defense mechanism[J]. J Biosci, 2013, 38(2):433-449.
[15]  Dowen RH, Pelizzola M, Schmitz RJ, et al. Widespread dynamic DNA methylation in response to biotic stress[J]. Proc Natl Acad Sci USA, 2012, 109(32):2183-2191.
[16]  Wang YS, An CF, Zhang XD, et al. The Arabidopsis elongator complex subunit 2 epigenetically regulates plant immune responses[J]. Plant Cell, 2013, 25(2):762-776.
[17]  Yadav RK, Chattopadhyay D. Enhanced viral intergenic region-specific short interfering RNA accumulation and DNA methylation correlates with resistance against a geminivirus[J]. Mol Plant Microbe Interact, 2011, 24(10):1189-1197.
[18]  Boyko A, Kathiria P, Zemp FJ, et al. Transgenerational changes in the genome stability and methylation in pathogen-infected plants:(virus-induced plant genome instability)[J]. Nucl Acids Res, 2007, 35(5):1714-1725.
[19]  Li XY, Wang XF, He K, et al. High-resolution mapping of epigenetic modifications of the rice genome uncovers between DNA methylation, histone methylation, and gene expression[J]. Plant Cell, 2008, 20(2):259-276.
[20]  Amente S, Bertoni A, Morano A, et al. LSD1-mediated demethyla-tion of histone H3 lysine 4 triggers myc-induced transcription[J]. Oncogene, 2010, 29(25):3691-3702.
[21]  Liu CY, Lu FL, Cui X, et al. Histone methylation in higher plants[J]. Annu Rev Plant Biol, 2010, 61:395-420.
[22]  Kim JM, To TK, Ishida J, et al. Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana[J]. Plant Cell Physiol, 2008, 49(10):1580-1588.
[23]  Scippa GS, Di Michele M, Onelli E, et al. The histone-like protein H1-S and the response of tomato leaves to water deficit[J]. J Exp Bot, 2004, 55(394):99-109.
[24]  Tsuji H, Saika H, Tsutsumi N, et al. Dynamic and reversible changes in histone H3-Lys4 methylation and H3 acetylation occurring at submergence-inducible genes in rice[J]. Plant Cell Physiol, 2006, 47(7):995-1003.
[25]  Jiang DH, Wang YQ, Wang YZ, et al. Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis poly-comb repressive complex 2 components[J]. PLoS One, 2008, 3(10):e3404.
[26]  Strahl BD, Allis CD. The language of covalent histone modifica-tions[J]. Nature, 2000, 403(6765):41-45.
[27]  Kim JM, To TK, Seki M. An epigenetic integrator:new insights into genome regulation, environmental stress responses and developmental controls by histone deacetylase 6[J]. Plant Cell Physiol, 2012, 53(5):794-800.
[28]  To TK, Nakaminami K, Kim JM, et al. Arabidopsis HDA6 is requ-ired for freezing tolerance[J]. Biochem Biophys Res Commun, 2011, 406(3):414-419.
[29]  Zhu JH, Jeong JC, Zhu YM, et al. Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance[J]. Proc Natl Acad Sci USA, 2008, 105(12):4945-4950.
[30]  Alvarez ME, Nota F, Cambiagno DA. Epigenetic?control?of?plant immunity[J]. Mol Plant Pathol, 2010, 11(4):563-576.
[31]  Kim KC, Lai ZB, Fan BF, et al. Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense[J]. Plant Cell, 2008, 20(9):2357-2371.
[32]  Chen LT, Wu KQ. Role of histone deacetylases HDA6 and HDA19 in ABA and abiotic stress response[J]. Plant Signal Behav, 2010, 5(10):1318-1320.
[33]  Sridha S, Wu K. Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis[J]. Plant J, 2006, 46(1):124-133.
[34]  Park HJ, Kim WY, Park HC, et al. SUMO and SUMOylation in plants[J]. Mol Cells, 2011, 32(4):305-316.
[35]  Hu Y, Zhu N, Wang X, et al. Analysis of rice Snf2 family proteins and their potential roles in epigenetic regulation[J]. Plant Physiol Biochem, 2013, 70:33-42.
[36]  Contreras-Cubas C, Palomar M, Arteaga-Vazquez M, et al. Non-coding RNAs in the plant response to abiotic stress[J]. Planta, 2012, 236(4):943-958.
[37]  Mendoza-Soto AB, Sanchez F, Hernandez G. MicroRNAs as regulators in plant metal toxicity response[J]. Front Plant Sci, 2012, 3:105.
[38]  Dugas DV, Bartel B. Sucrose induction of Arabidopsis miR398 represses two Cu/Zn superoxide dismutases[J]. Plant Mol Biol, 2008, 67(4):403-417.
[39]  Khraiwesh B, Zhu JK, Zhu JH. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants[J]. Biochim Biophys Acta, 2012, 1819(2):137-148.
[40]  Liu PP, Montgomery TA, Fahlgren N, et al. Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages[J]. Plant J, 2007, 52(1):133-146.
[41]  Lv DK, Bai X, Li Y, et al. Profiling of cold-stress-responsive mi-RNAs in rice by microarrays[J]. Gene, 2010, 459(1-2):39-47.
[42]  Gao P, Bai X, Yang L, et al. Over-expression of osa-MIR396c decr-eases salt and alkali stress tolerance[J]. Planta, 2010, 231(5):991-1001.
[43]  Bottino MC, Rosario S, Grativol C, et al. High-throughput sequencing of small RNA transcriptome reveals salt stress regulated microRNAs in sugarcane[J]. PLoS One, 2013, 8(3):e59423.
[44]  Navarro L, Dunoyer P, Jay F, et al. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling[J]. Science, 2006, 312(5772):436-439.
[45]  Fahlgren N, Howell MD, Kasschau KD, et al. High-throughput sequencing of Arabidopsis microRNAs:evidence for frequent birth and death of MIRNA genes[J]. PLoS One, 2007, 2(2):e219.
[46]  Ito H. Small RNAs and regulation of transposons in plants[J]. Genes Genet Syst, 2013, 88(1):3-7.
[47]  Yao YL, Bilichak A, Golubov A, et al. Differential sensitivity of Arabidopsis siRNA biogenesis mutants to genotoxic stress[J]. Plant Cell Rep, 2010, 29(12):1401-1410.
[48]  Katiyar-Agarwal S, Morgan R, Dahlbeck D, et al. A pathogen-inducible endogenous siRNA in plant immunity[J]. Proc Natl Acad Sci USA, 2006, 103(47):18002-18007.
[49]  Sahu PP, Rai NK, Chakraborty S, et al. Tomato cultivar tolerant to Tomato leaf curl New Delhi virus infection induces virus-specific short interfering RNA accumulation and defence-associated host gene expression[J]. Mol Plant Pathol, 2010, 11(14):531-544.
[50]  Sahu PP, Rai NK, Puranik S, et al. Dynamics of defense-related components in two contrasting genotypes of tomato upon infection with tomato leaf curl new Delhi virus[J]. Mol Biotechnol, 2012, 52(2):140-150.
[51]  Miguel C, Marum L. An epigenetic view of plant cells cultured in vitro:somaclonal variation and beyond[J]. J Exp Bot, 2011, 62(11):3713-3725.
[52]  Steward N, Kusano T, Sano H. Expression of ZmMET1, a gene encoding a DNA methyltransferase from maize, is associated not only with DNA replication in actively proliferating cells, but also with altered DNA methylation status in cold-stressed quiescent cells[J]. Nucl Acids Res, 2000, 28(17):3250-3259.
[53]  Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals[J]. Nat Rev Genet, 2010, 11(3):204-220.
[54]  Zilberman D, Henikoff S. Epigenetic inheritance in Arabidopsis:selective silence[J]. Curr Opin Genet Dev, 2005, 15(5):557-562.
[55]  Choi CS, Sano H. Abiotic-stress induces demethylation and transc-riptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants[J]. Mol Genet Genomics, 2007, 2779(5):589-600.
[56]  Efroni I, Han SK, Kim HJ, et al. Regulation of leaf maturation by chromatin-mediated modulation of cytokinin responses[J]. Cell, 2013, 24(4):438-445.
[57]  Saez A, Rodrigues A, Santiago J, et al. HAB1-SWI3B interaction reveals a link between abscisic acid signaling and putative SWI/SNF chromatin-remodeling complexes in Arabidopsis[J]. Plant Cell, 2008, 20(11):2972-2988.
[58]  Rios G, Gagete AP, Castillo J, et al. Abscisic acid and desiccation-dependent expression of a novel putative SNF5-type chromatin-remodeling gene in Pisum sativum[J]. Plant Physiol Biochem, 2007, 45(6-7):427-435.
[59]  Jeddeloh JA, Stokes TL, Richards EJ. Maintenance of genomic methylation requires a SWI2/SNF2-like protein[J]. Nat Genet, 1999, 22(1):94-97.
[60]  Vongs A, Kakutani T, Martienssen RA, et al. Arabidopsis thaliana DNA methylation mutants[J]. Science, 1993, 260(5116):1926-1928.
[61]  Yao YL, Bilichak A, Golubov A, et al. ddm1 plants are sensitive to methyl methane sulfonate and NaCl stresses and are deficient in DNA repair[J]. Plant Cell Rep, 2012, 31(9):1549-1561.
[62]  March-Díaz R, García-Domínguez M, Florencio FJ, et al. SEF, a new protein required for flowering repression in Arabidopsis, interacts with PIE1 and ARP6[J]. Plant Physiol, 2007, 143(2):893-901.
[63]  Sunkar R, Kapoor A, Zhu JK. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by down-regulation of miR398 and important for oxidative stress tolerance[J]. Plant Cell, 2006, 18(8):2051-2065.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133