全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2012 

基于非线性动力学的乐器分类方法

DOI: 10.3969/j.issn.0372-2112.2012.07.032, PP. 1481-1488

Keywords: 乐器分类,非线性动力学,相空间重构,密集度,递归图

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文基于非线性动力学理论,对不同乐器产生的音频时间序列进行了相空间重构,通过分析各类乐器的递归特性,提出了一个新的定量递归参数——密集度,它能够描述管乐器、弦乐器和键盘乐器在相空间中的差异,然后将密集度与传统的音色特征相结合,提出一种乐器分类方法,并将其应用于不同的分类模型.实验表明,本文所提的方法使三类乐器家族的分类准确率提高了4%~7%,单个乐器的分类准确率提高了3%左右.

References

[1]  张一彬,周杰,边肇祺,张大鹏.一种新的基于分类的音频流分割方法[J].电子学报,2006,34(4):612-617. ZHANG Yi-bin,ZHOU Jie,BIAN Zhao-qi,ZHANG Da-peng.A novel classification-based audio segmentation algorithm [J].Acta Electronica Sinica,2006,34(4):612-617.(in Chinese)
[2]  A Eronen.Comparison of features for musical instrument recognition.Proceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics.New York:IEEE Press,2001.19-22.
[3]  J Garcia A Barbedo,G Tzanetakis.Musical instrument classification using individual partials [J].IEEE Transactions on Audio,Speech,and Language Processing,2011,19(1):111-122.
[4]  H Kantz,T Schreiber.Nonlinear Time Series Analysis [M].Cambridge,UK:Cambridge University Press,2nd edition,2004.64-151.
[5]  J P Zbilut,C L Webber Jr.Embeddings and delays as derived from quantification of recurrence plots [J].Physics Letters,1992,171:199-203.
[6]  N Marwan,N Wessel.Recurrence-plot-based measures of complexity and their application to heart-rate-variability data [J].Physical Review,2002,66:1-8.
[7]  齐峰岩,鲍长春.一种基于支持向量机的含噪语音的清/浊/静音分类的新方法[J].电子学报,2006,34(4):605-611. QI Feng-yan,BAO Chang-chun.A method for voiced / unvoiced / silence classification of speech with noise using SVM [J].Acta Electronica Sinica,2006,34(4):605-611.(in Chinese)
[8]  卢坚,陈毅松,孙正兴.基于隐马尔可夫模型的音频自动分类[J].软件学报,2002,13(8):1593-1597. LU Jian,CHEN Yi-song,SUN Zheng-xing.Automatic audio classification by usig hidden Markov model [J].Journal of Software,2002,13(8):1593-1597.(in Chinese)
[9]  J Serra,C A Santos,et al.Nonlinear audio recurrence analysis with application to genre classification.Proceedings of IEEE International Conference on Acoustics,Speech,and Signal Processing.Prague:IEEE Press,2011.169-172.
[10]  F Takens.Detecting strange attractors in turbulence [J].Lecture Notes in Mathematics,Springer,Berlin,1981,898:366-381.
[11]  T Kitahara,M Goto,K Komatani,T Ogata.Musical instrument recognizer "instrogram" and its application to music retrieval based on instrumentation similarity.Proceedings of IEEE International Symposium on Multimedia.Washington DC:IEEE Press,2006.265-274.
[12]  J P Eckmann,S O Kamphorst,D Ruelle.Recurrence plots of dynamical systems [J].Physics Letters,1987,4:973-977.
[13]  J B Gao,H Q Cai.On the structures and quantification of recurrence plots[J].Physics Letters A,2000,270:75-87.
[14]  ISO/MPEG N4224.Text of ISO/IEC Final Draft International Standard 15938-4 Information Technology Multimedia Content Description Interface—Part 4 Audio [S].MPEG Audio Group,Sydney,2001.
[15]  Zhou-yu Fu,Guo-jun Lu,et al.Learning nave bays classifiers for music classification and retrieval.Proceedings of IEEE International Conference on Pattern Recognition.Istanbul:IEEE Press,2010.4589-4593.
[16]  Khe Chai Sim,Kong-Aik Lee.Adaptive score fusion using weighted logistic linear regression for spoken language recognition.Proceedings of IEEE International Conference on Acoustics,Speech,and Signal Processing.Dallas:IEEE Press,2010.5018-5021.
[17]  M Hall,E Frank,et al.The Weka data mining software:An update [J].ACM SIGKDD Explorations Newsletter,2009,11(1):10-18.
[18]  Mark R Every.Discriminating Between Pitched Sources in Music Audio [J].IEEE Transactions on Audio,Speech,and Language Processing,2008,16(2):267-277.
[19]  Jeremiah D Deng,C Simmermacher,S Cranefield.A study on feature analysis for musical instrument classification [J].IEEE Transactions on Systems,Man,and Cybernetics—Part B:Cybernetics,2008,38(2):429-438.
[20]  B Kostek.Musical instrument classification and duet analysis employing music information retrieval techniques [J].Proceedings of the IEEE,2004,92(4):712-729.
[21]  Y T Sha,C C Bao,et al.High frequency reconstruction of audio signal based on chaotic prediction theory.Proceedings of IEEE International Conference on Acoustics,Speech,and Signal Processing.Dallas:IEEE Press,2010.381-384.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133