全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2012 

基于全变分α散度最小化的PET优质重建

DOI: 10.3969/j.issn.0372-2112.2012.06.033, PP. 1263-1268

Keywords: 正电子发射成像,阿尔法散度,全变分,自适应非单调线性搜索

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了获得优质的PET成像,本文提出一种基于全变分阿尔法散度最小化的PET重建新方法.新方法通过引入阿尔法散度度量投影数据和估计值之间的偏差;通过增加全变分正则化修正阿尔法散度最小化解的一致性.针对新构建的PET重建目标函数的求解,本文提出一种基于次梯度理论的交替式迭代策略,期间运用自适应非单调线性搜索来保证算法的收敛性.仿真和临床PET数据实验表明,本文方法在噪声抑制和边缘保持方面均优于传统的PET重建方法.

References

[1]  Bertero M,Mol C D,Pike E R.Linear inverse problems with discrete datat I:General formulation and singular system analysis[J].Inverse Problem,1985,1(4):301-330.
[2]  Lange K.Convergence of EM image reconstruction algorithms with Gibbs smoothness[J].IEEE Transactions on Medical Imaging,1990,9(4):439-446.
[3]  Anderson J M,Mair B A,Rao M,Wu C H.Weighted least-squares reconstruction algorithms for positron emission tomography[J].IEEE Transactions on Medical Imaging,1997,16(2):159-165.
[4]  Fessler J A.Penalized weighted least-squares image reconstruction for positron emission tomography[J].IEEE Transaction on Medical Imaging,1994,13(2):290-300.
[5]  Ma J H,Tian L L,Huang J,et al.Low-dose computed tomography image reconstruction by α-divergence constrained total variation minimization .Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine Conference Record .Potsdam:IEEE Press,2011.439-442.
[6]  Sawatzky A,et al.Accurate EM-TV algorithm in PET with low SNR .Nuclear Science Symposium Conference Record .Dresden:IEEE Press,2008.5133-5137.
[7]  Amari S.Differential-Geometrical Methods in Statistics[M].Berlin:Springer-Verlag,1985.580-650.
[8]  Chambolle A.An algorithm for total variation minimization and applications[J].Journal of Mathematical Imaging and Vision,2004,20(1-2):89-97.
[9]  Fessler J A.Image reconstruction toolbox .http://www.eecs.umich.edu/~fessler/code/index.html,2011-04-18.
[10]  Patrick J,La Riciere.Penalized-likelihood sinogram smoothing for low-dose CT .Medical Physics,2005,32(6):1676-83.
[11]  毕一鸣,马建华,等.基于标准剂量CT图像非局部权值先验的低剂量图像恢复[J].电子学报,2010,38(5):1143-1151. Bi Y M,Ma J H,et al.Low-dose CT image restoration using a non-local weights prior from previous normal-dose scan image[J].Acta Electronica Sinica,2010,38(5):1143-1151.(in Chinese)
[12]  Bertero M,Pogcio T A,Torre V.Ill posed problems in early vision[J].Proc IEEE,1988,76(8):869-889.
[13]  Shepp L A,Vardi Y.Maximum likelihood reconstruction for emission tomography[J].IEEE Transactions on Medical Imaging,1982,1(2):113-122.
[14]  Leahy R M,Qi J Y.Statistical approaches in quantitative positron emission tomography[J].Statistics and Computing,2000,10(2):147-165.
[15]  Teng Y,Zhang T.Iterative reconstruction algorithms with α-divergence for PET imaging[J].Computerized Medical Imaging and Graphics,2011,35(4):294-301. Cichocki A,Lee H,et al.Non-negative matrix factorization with α-divergence .Pattern Recognition Letters,2008,29(9):1433-1440.
[16]  Nuyts J,Beque D,Dupont P,Mortelmans L.A concave prior penalizing relative differences for maximum-a-posteriori in emission tomography[J].IEEE Transactions on Nuclear Science,2002,49(1):56-60.
[17]  Rudin L,Osher S,Fatemi E.Nonlinear total variation based noise removal algorithms[J].Physica D,1992,60(27):259-268.
[18]  Sidky E Y,Kao C,Pan X.Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT[J].X-Ray SciTech,2006,14(2):119-39.
[19]  Acar R,Vogel C R.Analysis of bounded variation penalty methods for ill-posed problems[J].Inverse Problem,1994,10(6):1217-1229.
[20]  Yu G H,Qi L Q,Dai Y H.On nonmonotone Chambolle gradient projection algorithms for total variation image restoration[J].Journal of Mathematical Imaging and Vision,2009,35(2):143-154.
[21]  黄静,马建华,等.基于广义Gibbs先验的优质PET成像[J].电子学报,2010,38(4):899-903. Huang J,Ma J H,et al.Generalized Gibbs priors in positron emission tomography .Acta Electronica Sinica,2010,38(4):899-903.(in Chinese)
[22]  马建华,陈武凡,等.基于最大互信息量熵差分割的CT金属伪影消除[J].电子学报,2009,37(8):1779-1783. Ma J H,Chen W F,et al.Metal artifact reduction in CT based on maximized the difference of mutual information segmentation[J].Acta Electronica Sinica,2009,37(8):1779-1783.(in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133