全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2014 

一种蜜蜂交配优化聚类算法

DOI: 10.3969/j.issn.0372-2112.2014.12.015, PP. 2435-2441

Keywords: 聚类,蜜蜂交配优化,粗糙集,K-means

Full-Text   Cite this paper   Add to My Lib

Abstract:

K-means算法因简单、高速等特点而被广泛应用,但该算法仍然存在依赖于初始聚类中心、易陷入局部最优等缺陷.为此,提出了一种蜜蜂交配优化聚类算法.该算法利用密度和距离初始化蜂群,并将局部搜索能力较强的粗糙集聚类算法作为工蜂的一种编码,以增强算法的局部搜索能力,最后在迭代过程中不断引入随机种群,增加种群的多样性,提高算法的全局寻优能力.实验结果表明,该算法不仅能有效抑制早熟收敛,而且具有较强的稳定性,较好的聚类效果.

References

[1]  Han J W,Kamber M.Data Mining:Concepts and Techniques[M].New York:Morgan Kaufmann Publishers,2001.335-388.
[2]  Xiao J,Yan Y P,et al.A quantum inspired genetic algorithm for K-means clustering[J].Expert Systems with Applications,2010,37(7):4966-4973.
[3]  Kwedlo W.A clustering method combining differential evolution with the K-means algorithm[J].Pattern Recognition Letters,2011,32(12):1613-1621.
[4]  Kao Y T,Zahara E.A hybridized approach to data clustering[J].Expert Systems with Applications,2008,34(3):1754-1762.
[5]  Shelokar P S,Jayaraman V K.An ant colony approach for clustering[J].Analytica Chimica Acta,2004,509(2):187-195.
[6]  Zhang C S,Ouyang D T,Ning J X.An artificial bee colony approach for clustering[J].Expert Systems with Applications,2010,37(7):4761-4767.
[7]  Anan B,Booncharoen S,Tiranee A.The best-so-far ABC with multiple patrilines for clustering problems[J].Neurocomputing,2013,116:355-366.
[8]  Chen J Y,Zhang C S.Efficient clustering method based on rough set and genetic algorithm[J].Procedia Engineering,2011,15:1498-1503.
[9]  Abdolreza H,Salwani A.A combined approach for clustering based on K-means and gravitational search algorithms[J].Swarm and Evolutionary Computation,2012,6:47-52.
[10]  孟伟,韩学东,洪炳.蜜蜂进化型遗传算法[J].电子学报,2006,34(7):1294-1300. Meng W,Han X D,Heng B.Bee evolutionary genetic algorithm[J].Acta Electronica Sinica,2006,34(7):1294-1300.(in Chinese)
[11]  张腾飞,陈龙,李云.基于簇内不平衡的粗糙K-means聚类算法[J].控制与决策,2013,28(10):1479-1484. Zhang T F,Chen L,Li Y.Rough K-means clustering based on unbalanced degree of cluster[J].Control and Decision,2013,28(10):1479-1484.(in Chinese)
[12]  Taher N,Babak A.An efficient hybrid approach based on PSO,ACO and K-means for cluster analysis[J].Applied Soft Computing,2010,10(1):183-197.
[13]  Abbass H A.MBO:marriage in honey bees optimization:a haplometrosis polygynous swarming approach[A].Proceedings Congress on Evolutionary Computation 2001[C].Seoul:IEEE Service Center,2001.207-214.
[14]  Thammano A,Poolsamran P.SMBO:A self-organizing model of marriage in honey-bee optimization[J].Expert Systems with Applications,2012,39(5):5576-5583.
[15]  Poolsamran P,Thammano A.A modified marriage in honey-bee optimization for function optimization problems[J].Procedia Computer Science,2011,6:335-342.
[16]  Fathian M,Amiri B.Application of honey-bee mating optimization algorithm on clustering[J].Applied Mathematics and Computation,2007,190(2):1502-1513.
[17]  Macqueen J.Some methods for classification and analysis of multivariate observations[A].Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability[C].Berkeley:University of California Press,1967.281-297.
[18]  王彪,段禅伦,等.粗糙集与模糊集的研究及应用[M].北京:电子工业出版社,2008.1-4.
[19]  Ding C,Li T.Adaptive dimension reduction using discriminant analysis and K-means clustering[A].Ghahramani.Proceedings of the 24th International Conference on Machine Learning[C].Oregon:ACM,2007.521-528.
[20]  Yin X S,Chen S C,Hu E L.Regularized soft K-means for discriminant analysis[J].Neurocomputing,2013,103:29-42.
[21]  Zhu S Z,Wang D D,Li T.Data clustering with size constraints[J].Knowledge-Based Systems,2010,23(8):883-889.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133