全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2014 

Plateaued函数谱支撑集的性质

DOI: 10.3969/j.issn.0372-2112.2014.05.017, PP. 948-952

Keywords: Plateaued函数,谱支撑集,扩散性

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文对Plateaued函数的谱支撑集的结构与性质进行了深入研究,给出了r阶Plateaued函数的全体非0谱值点集合与线性结构集的维数之间的关系.利用谱指标对2阶Plateaued函数和4阶Plateaued函数的自相关性进行了详细分析,给出了其自相关系数的分布.分析了r阶Plateaued函数的谱支撑集和零谱值点集的结构特征,给出了多个r阶Plateaued函数的谱支撑集在不相交时自相关系数之间的关系以及谱支撑集与函数平衡性的关系.

References

[1]  Li Shi-Qi,Zhao Ya-Qun.The relation between partially-Bent and Bent functions[A].Proceedings of CCICS’99[C].Beijing,1999.196-201.
[2]  Carlet.Partially bent functions[A].Advance in Cryptology-Crytpo’93[C].Berlin:Springer-Verlag,1993.77-101.
[3]  S Chee,S Lee.Semi-bent functions[A].Advance in Cryptology-Asiacrytp’94[C].Berlin:Springer-Verlag,1995.107-118.
[4]  秦静,赵亚群.半Bent函数的密码学特性[J].山东大学学报(理学版),2002,37(12):480-483. QinJing,Zhaoyachen.Cryptographicproperties of Semi-bent functions[J].Journal of Shandong University(Natural Science),2002,37(12):480-483.(in Chinese).
[5]  Y.Zheng,XM Zhang.On plateaued functions[J].IEEE Transactions on Information Theory,2001,47(3):1215-1223.
[6]  胡斌,金晨辉,邵增玉.密码学中三类具有特殊Walsh谱值布尔函数的关系[J].通信学报,2010,31(7):104-109. Hu Bin,et al.Relationship among three kinds of cryptographic Boolean functions with special walsh spectrum[J].Journal on Communications,2010,31(7):104-109.(in Chinese)
[7]  X Li,Y Hu ,J Gao.Autocorrelation coefficient of two classes of semi-bent functions[J].Applied Mathematics and Information Sciences,2011,5(1):85-97.
[8]  冯登国.频谱理论及其在密码学中的应用[M].北京:科学出版社,2000.
[9]  Claude Carlet,Pascale Charpin.Cubic Boolean function with highest resiliency[J].IEEE Transactions on Information Theory,2007,53(2):562-571.
[10]  Yuriy Tarannikov.On affine rank of spectrum support for plateaued function[DB/OL].http://eprint.org/2005/399.pdf,2012-05-15.
[11]  S.Gangopadhyay,B K Singh.On second-order nonlinearities of some D0 type bent functions[J].Fundamenta Informaticae,2012,114(3):271-285.
[12]  M.Garg,S Gangopadhyay.A lower bound of the second-order nonlinearities of Boolean bent functions[J].Fundamenta Informaticae,2011,111(4),413-422.
[13]  X Zeng,C Carlet,J Shan,L Hu.More balanced Boolean functions with optimal algebraic immunity and good nonlinearity and resistance to fast algebraic attacks[J].IEEE Transactions on Information Theory,2011,57(9):6310-6320.
[14]  Z Tu,Y Deng.A conjecture about binary strings and its applications on constructing Boolean functions with optimal algebraic immunity[J].Designs,Codes and Cryptography,2011,60(1):1-14.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133