全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

体外连续培养条件下稀释率对培养液中氮素分配的影响

DOI: 10.3969/j.issn.1006-267x.2013.03.014

Keywords: 连续培养,瘤胃微生物,稀释率,氮素分配

Full-Text   Cite this paper   Add to My Lib

Abstract:

本试验旨在研究体外连续培养条件下稀释率对培养液中氮素分配的影响。试验设3个稀释率,分别为4%/h、6%/h和8%/h,每个稀释率设3个重复。由5只瘘管山羊提供瘤胃液。结果表明:随培养时间的延续,培养液中原虫蛋白质、细菌蛋白质、可溶性蛋白质、肽、游离氨基酸氮、氨氮的含量皆呈波动变化,再次投料后变化趋势基本一致。随着稀释率的升高,培养液中原虫蛋白质、细菌蛋白质、可溶性蛋白质、肽、游离氨基酸氮、氨氮的含量均有所下降,除可溶性蛋白质外,其他指标均出现显著或极显著变化(P<0.05或P<0.01)。24h流量结果表明,上述6个指标中氮素流量随稀释率的升高皆升高,但其在总氮素流量中所占比例的变化有所不同。其中,原虫蛋白质中氮素流量及其在总氮素流量中所占比例在4%/h、6%/h、8%/h稀释率下分别为256.32mg/d和30%、367.20mg/d和31%、385.92mg/d和29%,以6%/h组的比例最高;细菌蛋白质中氮素流量及其在总氮素流量中所占比例在4%/h、6%/h、8%/h稀释率下分别为218.88mg/d和26%、289.44mg/d和25%、328.32mg/d和24%,其比例随稀释率提高持续下降;微生物蛋白质(原虫蛋白质和细菌蛋白质之和)中氮素流量及其在总氮素流量中所占比例在4%/h、6%/h、8%/h稀释率下分别为475.20mg/d和56%、656.64mg/d和56%、714.24mg/d和53%,以6%/h组流量相对较高,且比例没有下降;可溶性蛋白质中氮素流量及其在总氮素流量中所占比例随稀释率的升高而提高,在4%/h、6%/h、8%/h稀释率下分别为178.56mg/d和21%、263.52mg/d和22%;345.60mg/d和26%。不同稀释率下,游离氨基酸氮、肽、氨氮中氮素流量在总氮素流量中所占比例范围分别为6%、5%~6%、10%~11%,总体上变化不大。综上所述,稀释率影响体外连续培养条件下培养液中氮素流量及其比例分配,并以稀释率为6%/h时的微生物蛋白质氮素流量及其在总氮素流量中所占比例较高。

References

[1]  CLARK J H,KLUSMEYER T H,CAMERON M R.Symposium:nitrogen metabolism and amino acid nutrition in dairy cattle[J].Journal of Dairy Science,1992,75:2304-2323.
[2]  STERN M D,VARGA G A,CLARK J H,et al.Evaluation of chemical and physical properties of feeds that affect protein metabolism in the rumen[J].Journal of Dairy Science,1994,77:2762-2786.
[3]  PATHAK A K.Various factors affecting microbial protein synthesis in the rumen[J].Veterinary World,2008,1:186-189.
[4]  HARRISON D G,BEEVER D E,THOMSON D J,et al.Manipulation of fermentation in the rumen[J].Journal of the Science of Food and Agriculture,1976,27:617-620.
[5]  SUHARTI S,ASTUTI D A,WINA E,et al.Rumen microbial population in the in vitro fermentation of different ratios of forage and concentrate in the presence of whole lerak (Sapindus rarak) fruit extract[J].Asian-Australia Journal of Animal Science,2011,24:1086-1091.
[6]  BARAKA T A M,ABDL-RAHMAN M A.In vitro evaluation of sheep rumen fermentation pattern after adding different levels of eugenol-fumaric acid combinations[J].Veterinary World,2012,5:110-117.
[7]  WAMBUI C C,ANDO S,ABDULRAZAK S A,et al.In vitro assessment of ruminal fermentation characteristics of tropical browse mixtures supplemented with yeast[J].Grassland Science,2012,58:53-57.
[8]  孟庆翔,KERLEY M S.瘤胃稀释率对蛋白质发酵和微生物生长效率的影响[J].中国农业科学,1998,31:72-78.
[9]  孟庆翔,高仲元,KERLEY M S,等.稀释率对于活体外瘤胃发酵和微生物生长效率的影响[J].动物营养学报,1999,11:10-16.
[10]  张丽英.饲料分析及饲料质量检测技术[M].2版.北京:中国农业大学出版社,2003.
[11]  LICITRA G,HERNANDEZ T M,VAN SOEST P J.Standardization of procedures for nitrogen fractionation of ruminant feeds[J].Animal Feed Science and Technology,1996,57:347-358.
[12]  WANG M Z,WANG H R,LI G X,et al.Effects of rations in different starch to filter paper ratio on rumen fermentation and microbes in vitro[J].Acta Nutrimenta Sinica,2007,6:654-662.
[13]  毕葳,邢延一,李燕燕,等.应用双缩脲反应测定鳖甲中总肽含量的方法学研究[J].中国实验方剂学杂志,2011,17(15):63-65.
[14]  冯宗慈,高民.通过比色测定瘤胃液氨氮含量方法的改进[J].畜牧与饲料科学:畜牧特刊,2010,31(6/7):37.
[15]  REDDY N M,REDDY G V N,REDDY M R.Effect of fodder based complete diets on the rumen fermentation pattern in crossbred bulls[J].Indian Journal of Animal Science,1993,10:7-12.
[16]  BRODERICK G A,REYNAL S M.Effect of source of rumen-degraded protein on production and ruminal metabolism in lactating dairy cows[J].Journal of Dairy Science,2009,92:2822-2834.
[17]  ESTELL R E Ⅱ,GALYEAN M L.Relationship of rumen fluid dilution rate to rumen fermentation and dietary characteristics of beef steers[J].Journal of Animal Science,1985,60:1061-1071.
[18]  ISAACSON H R,HINDS F C,BRYANT M B,et al.Efficiency of energy utilization by mixed rumen bacteria in continuous culture[J].Journal of Dairy Science,1975,58:1645-1659.
[19]  MAENG W J,CHANG M B,YUN H S.Dilution rates on the efficiency of rumen microbial growth in continuous culture[J].Asia-Australia Journal of Animal Science,1989,2:477-480.
[20]  COLEMAN G S,SANDFORD D C.The engulfment and digestion of mixed rumen bacteria and individual bacterial species by single and mixed species of rumen ciliate protozoa grown in vivo[J].The Journal of Agricultural Science,1979,92:729-742.
[21]  NEWBOLD C J,HILLMAN K.The effect of ciliate protozoa on the turnover of bacterial and fungal protein in the rumen of sheep[J].Letters in Applied Microbiology,1990,11:100-102.
[22]  WANG M Z,WANG H R,YU L H.Effects of forage level in diet on bacterial protein recycling in goat’ rumen[J].Research Journal of Animal Science,2010,4:10-15.
[23]  MARTNEZ M E,RANILLA M J,RAMOS S,et al.Effects of dilution rate and retention time of concentrate on efficiency of microbial growth,methane production,and ruminal fermentation in Rusitec fermenters[J].Journal of Dairy Science,2009,92:3930-3938.
[24]  BRODERICK G A,HUHTANEN P,AHVENJARVI S,et al.Quantifying ruminal nitrogen metabolism using the omasal sampling technique in cattle—a meta-analysis[J].Journal of Dairy Science,2010,93:3216-3230.
[25]  KOENIG K M,NEWBOLD C J,MCINTOSH F M,et al.Effects of protozoa on bacterial nitrogen recycling in the rumen[J].Journal of Animal Science,2000,78:2431-2445.
[26]  NHAN N T H,NGU N T,THIET N,et al.Determination of the optimum level of a soybean oil drench with respect to the rumen ecosystem,feed intake and digestibility in cattle[J/OL].Livestock Research for Rural Development,2007,19(8):[2007-08-06].http://www.cipav.org.co/lrrd/lrrd19/8/nhan19117.htm.
[27]  JOUNAY J P,USHIDA K.The role of protozoa in feed digestion review[J].Asia-Australia Journal of Animal Science,1999,12:113-128.
[28]  ABE M,KUMENO F.In vitro simulation of rumen fermentation:apparatusand effects of dilution rat and continuous dialysis on fermentation and protozoal population[J].Journal of Animal Science,1973,36:941-948.
[29]  CRAWFORD R J Jr.[KG-*3],HOOVER W H,JUNKINS L L.Effects of solids and liquid flows on fermentation in continuous cultures.Nitrogen partition and efficiency of microbial synthesis[J].Journal of Animal Science,1980,51:986-895.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133