Hollister L S, Crawford M L. Melt enhanced deformadon-a major tectonic process[J]. Geology, 1986, 14: 558-561.
[2]
Hollister L S. The role of melt in the uplift and exhumation of orogenic belts[J]. Chemical Geology, 1993, 108: 31-48.
[3]
Aoya M, Wallis S R , Terada K, et al. North-south extension in the Tibetan crest triggered by granite emplacement [J]. Geology, 2005, 33: 853-856.
[4]
Lee J, Whitehouse M J. Onset of mid-crustal extensional flow in southern Tibet: evidence from U/Pb zircon ages[J]. Geology, 2007, 35: 45-48.
[5]
Zeng L S, Liu J, Gao L E, et al. Early Oligocene crustal anatexis in the Yardoi gneiss dome, southern Tibet and geological implications[J]. Chinese Science Bulletin,2008, in press.
[6]
Handy M R. The solid-state flow of polyrrfineralic rocks[J]. Journal of Geophysical Research, 1990, 95: 8467-8661.
[7]
Sawyer E W. Melt segregation in the continental crust[J]. Geology, 1994, 22: 1019-1022.
[8]
Handy M R, Wissing S, Streit J E. Strength and structure of mylonite with combined frictional-viscous rheology and varied bimineralic composition[J]. Tectonophysics, 1999, 303: 175-192.
[9]
Vigneresse J L, Barbey P, Cuney M. Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer[J]. Journal of Petrology, 1996, 37: 1579-1600.
[10]
Barboza S A, Bergantz G W. Rheological transitions and the progress of melting of crustal rocks[J]. Earth and Planetary Science Letters, 1998, 158: 19-29.
[11]
Davidson C, Schmid S M, Hollister L S. Role of melt during deformation in the deep crust[J]. Terra Nova, 1994, 6: 133-142.
[12]
Whittington A G, Treloar P J. Crustal anatexis and its relation to the exhumation of collisional orogenic belts, with particular reference to the Himalaya[J]. Mineralogical Magazine, 2002, 66: 53-91.
[13]
Shaw H R. Viscosities of magrnatic silicate liquids: A empirical method of prediction[J]. American Journal of Science, 1972, 272: 870-893.
[14]
Shaw H R. Fracture mechanisms of magma transport from the mantle to the surface[C]//Hargraves R B. Physics of magmatic process. Princeton University Press, Princeton, New Jersey, 1980: 201-264.
[15]
Arzi A A. Critical phenomena in the rheology of partially melted rocks[J]. Tectonophysics, 1978, 44: 173-184.
[16]
van der Molen I, Paterson M S. Experimental deformation of partially-melted granite[J]. Contribution to Mineralogy and Petrology, 1979, 70:299-318.
[17]
Renner J, Evans B, Hirth G. On the rheologically critical melt fraction[J]. Earth and Planetary Science Letters, 2000, 181: 585-594.
[18]
Brown M. The generation, segregation, ascent and emplacement of granite magma: The migmatite-to-crustally-derived granite connection in thickened orogens[J]. Earth-Sci Rev., 1994, 36: 83-130.
[19]
Brown M, Rushmer T, Sawyer E. Introduction to special section: mechanism and consequences of melt segregation from crustal protoliths[J].Journal of Geophysical Research, 1995, 100: 15551-15563.
[20]
Zeng L, Saleeby J B, Ducea M. Geochemical characteristics of crustal anatexis during the formation of migmatite at the Southern Sierra Nevada, California[J]. Contributions to Mineralogy and Petrology, 2005, 150: 386-402.
[21]
Brown M, Rushrner T. The role of deformation in the movement of granitic melt: views from the laboratory and the field[C]//Holness M B. Deformation-enhanced fluid transport in the Earth\\'s crest and mantle. Chapman & Hall, London, 1997: 111-144.
[22]
Bateman P C, Eaton J P. Sierra Nevada batholith[J]. Science, 1967, 158: 1407-1417.
[23]
Ague J J, Brimhall G H. Regional variations in bulk chemistry, mineralogy, and the composition of mafic and accessory minerals in the batholiths of California[J]. Geological Society of America Bulletin, 1988, 100: 891-911.
[24]
Ague J J, Brimhall G H. Magmatic arc asymmetry and distribution of anomalous plutonic belts in the batholiths of California: Effects of Assimilation, crustal thickness, and depth of crystallization [J]. Geological Society of America Bulletin, 1988, 100: 912-927.
[25]
Chen J H, Moore J G. Uranium-lead isotopic ages from the Sierra Nevada batholith[J]. Journal of Geophysical Research, 1982, 87: 4761-4784.
[26]
Saleeby J B, Sams D B, Kisder R W. U/Pb zircon, strontium, and oxygen isotopic and geochronological study of the southernmost Sierra Nevada batholith, California[J]. Journal of Geophysical Research, 1987, 92: 10443-10466.
Ague J J, Brimhall G H. Granites of the batholiths of California: Products of local assimilation and regional-scale crustal contamination[J]. Geology, 1987, 15: 63-66.
[29]
曾令森 Mihai DUCEA Jason SALEEBY.变泥质岩的深熔作用与具铈(Ce)负异常熔体的成因[J].岩石矿物学杂志,2005,24(5):425~430.
[30]
Saleeby J B. Progress in tectonic and petrogenetic studies in an exposed cross-section of young (-100 Ma) continental crust, southern Sierra Nevada, Califomia[C]//Salisbury M H. Exposed cross-section of the continental crusc D. Reidel, Norwell, Mass., 1990: 137-158.
[31]
Saleeby J B, Busby C. Paleogeographic and tectonic setting of axial and western metamorphic framework rocks of the southern Sierra Nevada, Califomia[C]//Dunn G, MacDougall K. Mesozoic Paleogeography of Western United States, Volume Ⅱ. Pacific Section SEPM (Society for Sedimentary Geology), 1993, 71:197-226.
[32]
Pickett D A, Saleeby J B. Thermobarometry of Cretaceous rocks of the Tehachapi Mountains, California: Plutonism and metamorphism in deep levels of the Sierra Nevada batholith[J]. Journal of Geophysical Research, 1993, 98: 609-629.
Saleeby J B. On some aspects of the geology of the Sierra Nevada [C]. Geol. Soc. Am. Spec. Pap., 1999, 38: 17-184.
[35]
Saleeby J B. The Sierra Nevada: Central California\\'s arc[C]. Geological Society of America Special Paper, 1999, 338: 161-172.
[36]
Saleeby J, Ducea M N, Busby C, et al. Chronology of Pluton Emplacement and Regional Deformation in the Southern Sierra Nevada Batholith, California[C]. GSA Special Paper, 2008, 419: 1-31.
[37]
Elan R. High grade contact metamorphism at the Lake Isabella North Shore roof pendant, Southern Sierra Nevada, California[M]. PhD Thesis, University of Southern California, 1986: 202.
[38]
Dixon E T. An evaluation of hornblende barometry Isabella to Tehachapi region, southern Nevada, California [M]. The University of Michigan M.S. Thesis, 1995: 178.
[39]
Patino Douce A E, Johnston A D. Phase equilibria and reek productivity in the pelitic system: Implications for the origin of peraluruinous granitoids and aluminous granulites[J]. Contribution to Mineralogy and Petrology, 1991, 107: 202-218.
[40]
Patino-Douce A E, Beard J S. Dehydration melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar [J]. Journal of Petrology, 1995, 36:707-738.
[41]
Lisle R J, Rondeel H E, Doom D, et al. Estimation of viscosity contrast and finite strain from defomled elliptical inclusions[J]. Journal of Structural Geology, 1983, 5: 603-609.
[42]
Treagus S H. Modelling the bulk viscosity of two-phase mixtures in terms of clast shape[J].Journal of Structural Geology, 2002, 24: 57- 76.
[43]
Treagus S H, Treagus J E. Studies of strain and rheology of conglomerates[J]. Journal of Structural Geology, 2002, 24: 1541-1567.
[44]
Zeng L. Non-modal partial melting of metasedimentary pendants in the Southern Sierra Nevada and implications for the deep origin of within-pluton isotopic heterogeneity[M]. PhD Thesis, California Institute of Technology, 2003: 225.
[45]
Dell\\'Angelo L N, Tullis J. Experimental deformation of partially melted granitic aggregates[J]. Journal of Metamorphic Geology, 1988, 6: 495-515.
[46]
Rosenberg C L, Riller U. Partial-melt topology in statically and dynamically recrystallized granite[J]. Geology, 2000, 28: 7-10.
[47]
Rosenberg C L, Deformation of partially molten granite: a review and comparison of experimental and natural case studies[J]. International Journal of Earth Sciences, 2001, 90: 60-76.
[48]
Stevens G, Clemens J D, Droop G T R. Melt production during granulite-facies anatexis: Experimental data from "primitive" metasedimentary protoliths[J]. Contribution to Mineralogy and Petrology, 1997, 128: 352-370.
[49]
Vielzeuf D, Holloway J R. Experimental determination of the fluid-absent melting relations in the pelitic system[J]. Contributions to Mineralogy and Petrology, 1988, 98: 257-276.
[50]
Clemens J D, Petford N. Granitic melt viscosity and silicic magma dynamics in contrasting tectonic settings[J]. Journal of the Geological Society, London, 1999, 156: 1057-1060.
[51]
Scaillet B, Holtz F, Pichavant M. Rheological properties of granitic magmas in their crystallization range[C]//Bouchez J L, Hutton D H W, Stephens W E. Granite: from segregation of melt to emplacement fabrics. 1997: 11-29.
[52]
Zeng L, Asimow P, Saleeby J B. Coupling of anatectic reactions and dissolution of accessory phases and the Sr and Nd isotope systematics of anatectic melts from a metasedimentary source[J]. Geochimica et Cosmochimica Acta, 2005, 69: 3671-3682.
[53]
Zeng L, Saleeby J B, Asimow P. Nd isotope disequilibrium during crustal anatexis: A record from the Goat Ranch migmatite complex, southern Sierra Nevada batholith, California[J]. Geology, 2005, 33: 53-56.
[54]
Rushmer T. Volume change during partial melting reactions: implications for melt extraction, melt geochemistry and crustal theology [J]. Tectonophysics, 2001, 342: 389-405.
[55]
Connolly J A D, Holuess M B, Ruble D C, et al. Reaction-induced microcracking: An experimental investigation of a mechanism for enhancing anatectic melt extraction[J]. Geology, 1997, 25: 591- 594.
[56]
Wickham S M. The segregation and emplacement of granitic magmas[J]. Journal of the Geological Society, London, 1987, 144: 281- 297.
[57]
Murrell S A F. Aspects of relationships between deformation and pro.grade metamorphism that causes evolution of water[C]//Thompson A B, Rubie D C. Metamorphic reactions, kinetics, textures, and deformation. Springer-Verlag, New York, 1985: 211-241.
[58]
Bell T H. Deformation partitioning and porphyroblasts rotation in metamorphic rocks: a radical reinterpretation[J]. Journal of Metamorphic Geology, 1985, 3: 109-118.