全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

山东招远金岭金矿埠南矿区1#脉流体特征及成矿物理化学条件研究

, PP. 314-319

Keywords: 混合流体,断裂带流体压力,成矿深度,中成脉型金矿,埠南

Full-Text   Cite this paper   Add to My Lib

Abstract:

金岭金矿埠南矿区成矿流体成分特征显示流体为有幔源流体参与的岩浆水与大气水的混合流体。均一法测温表明成矿温度在103~352℃,变化较大;通过Shenberger等和Hayashi等LogfO2-pH图解,温度较低的成矿中期阶段(250℃±)流体系统中的金明显比早期阶段(300℃±)富集。成矿流体中金主要以Au(HS)-2形式存在。根据含CO2三相包体估算,流体压力在51~70MPa之间。根据Sibson等断裂带流体垂直分带曲线,在流体压力为40~370MPa时,断裂带流体压力和深度之间为非线性关系,成矿深度既不能用静水压力梯度也不能用静岩压力梯度来计算,应该用特定的流体压力和深度关系式计算。通过分段拟合深度和压力之间的关系式计算出金岭金矿成矿深度在5.7~6.78km之间;按照Gebre?Mariam等提出太古代后生金矿深度分类,属典型中成脉型金矿。

References

[1]  Sun F, Shi Z and Feng B.1995. Gold ore geology, lithogenesis and metallogenesis related to the differenliaion of mantle?derived C?H?O fluids in Jiaodong Peninsula, Eastern China. Changchun: Jilin People’s Press,131-138.
[2]  Sun F, Jin W, Li B and Peng X. 2000. Considerations on the mineralizing depth of hydrothermal lode gold deposits. Journal of Changchun University of Science and Technology, 30:27-30.
[3]  Sun X, Xu K and Ren Q. 1992. The discovery of two different gold deposit types in Jiapigou gold mine, Jilin Province and its general significance in North China Platform. Chinese Science Bulletin,(14):1299-1301.
[4]  Sun Zhongshi. 1995. Geologic setting, ore?controlling structure and metallogenic mechanism of Jiapigou gold deposit, Jilin Province (Ph.D. dissertation, supervised by Feng B.) Changchun: Journal of Changchun University of Earth Sciences, 75-80.
[5]  季克俭,王立本. 1994. 热液源研究的重要进展和“三源”交代热液成矿学说.地学前缘,1(4): 126~131.
[6]  卢焕章,李秉伦,沈昆. 1990.包裹体地球化学.北京:地质出版社, 102~154.
[7]  孙丰月,石准立,冯本智.1995.胶东金矿地质及幔源C-H-O流体分异成岩成矿.长春:吉林大民出版社,79~119.
[8]  孙丰月,金巍,李碧乐,彭晓蕾. 2000.关于脉状热液金矿成矿深度的思考.长春科技大学学报(专辑),(30): 27~30.
[9]  孙晓明,徐克勤,任启江. 1992.吉林省夹皮沟金矿区两类不同金矿床的发现及其在华北地台上的普遍意义.科学通报,(14): 1299~1301.
[10]  孙忠实. 1995.吉林夹皮沟金矿带地质背景、控矿构造及成矿机制(博士论文).导师:冯本智.长春地质学院, 75~80.
[11]  Gebre?Mariam M, Hagemann S G and Groves D I. 1995. A classification scheme for epigenetic Archean lode?gold deposits. Miner Deposita, 30: 408-410.
[12]  Groves D I and Phillips G N. 1989. The genesis and tectonic control on Archaean gold deposits of the Western Australian shield?A metamorphic replacement model. Ore Geology Review, 2: 287-322.
[13]  Hayashi K I and Ohmoto H. 1991. Solubility of gold in NaCl and HS?bearing aqueous solutions at 250?350 ℃. Geochim Cosmochim Acta, 55: 2111-2126.
[14]  Ji K and Wang L. 1994.The significant research progress of the source of hydrothermal solution and "triple-source" metasomatic hydrothermal metallogeny. Earch Science Frontiers, 1(4)126-131.
[15]  Kerrich R. 1990. Geodynamic setting of mesothermal gold deposits: An association with accretionary tectonic regimes. Geology, 18: 882-885.
[16]  Kozlovsky Y A. 1987. The superdeep hole of the Kola Peninsula. Berlin: Springer?Verlag, 557.
[17]  Kerr R A. 1994. German super?deep hole hits bottom. Science, 263: 545.
[18]  Lu H, Li B and Shen K. 1990. Geochemistry of fluid inclusions. Beijing: Geol Pub House,102-154.
[19]  Rodder E. Fluid inclusion evidence for immiscibility in magmatic differentiation. Geochim Cosmochim Acta, 1992, 56: 5-20.
[20]  Shenberger D M and Barnes H L. 1989. Solubility of gold in aqucous sulfide solufions from 150 to 350 ℃. Geochim Cosmochim Acta, 53: 269-278.
[21]  Sibson R H, Robert F and Poulson K H. 1988. High-angle reverse faults, fluid-pressure cycling and mesothermal gold-quartz deposits. Geology, 16: 551-555.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133