全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

罗布莎蛇绿岩地幔橄榄岩同位素特征及其成因

, PP. 85-94

Keywords: 罗布莎,地幔橄榄岩,Sr、Nd、Pb同位素,Dupal异常

Full-Text   Cite this paper   Add to My Lib

Abstract:

罗布莎蛇绿岩岩石单元出露齐全,以地幔橄榄岩为主,构造变形强烈;在堆积杂岩中上部产出有仰冲型斜长花岗岩小岩块;辉绿岩以脉状形式产出于地幔橄榄岩的方辉橄榄岩中;壳层岩石相对很薄且比较复杂。Sr、Nd和Pb同位素组成研究表明:罗布莎地幔橄榄岩绝大多数样品具有高ISr值(0.705489~0.714625);低INd值(0.511796~0.512605),其Pb同位素组成具有高Δ7/4Pb、Δ8/4Pb值,大部分样品接近或大于典型Dupal端员的Pb同位素标准(Δ8/4Pb>60),结合罗布莎地幔橄榄岩具有高的ΔSr值(81.54~154.01),认为罗布莎地幔橄榄岩存在明显的Dupal异常。同时结合罗布莎地区的构造演化,认为罗布莎地区富集的、具有Dupal异常的地幔橄榄岩应当是在特提斯洋形成过程中的同化了俯冲板片携带的沉积物的深地幔柱交代影响下形成的。

References

[1]  焦荣昌. 1982. 喜马拉雅-雅鲁藏布江中段地球物理场特征及其初步分析 // 青藏高原地质文集Ⅰ. 北京: 地质出版社.
[2]  王希斌, 鲍配声, 邓万明. 1987. 西藏蛇绿岩. 北京: 地质出版社: 24-29.
[3]  魏启荣, 沈上越, 莫宣学, 路凤香. 2003. 三江中段Dupal同位素异常的识别及其意义. 地质地球化学, 31(1): 36-41.
[4]  邢光福. 1997. Dupal同位素异常的概念、成因及其地质意义. 火山地质与矿产, 18(4): 281-291.
[5]  徐义刚. 1999. 拉张环境中的大陆玄武岩浆作用: 性质及动力学过程 // 郑永飞主编. 化学地球动力学. 北京: 科学出版社: 119-167.
[6]  许继峰. 1997. 秦岭勉略地区古特提斯洋的形成演化及化学地球动力学意义. 中国科学院广州地球化学研究所博士后研究工作报告.
[7]  钟立峰, 夏斌, 周国庆, 王冉, 韦栋梁, 李建峰. 2006a. 藏南罗布莎蛇绿岩辉绿岩中锆石SHRIMP测年. 地质论评, 52(2): 224-229.
[8]  钟立峰, 夏斌, 崔学军, 周国庆, 陈根文, 韦栋梁. 2006b. 藏南罗布莎蛇绿岩壳层熔岩地球化学特征及成因. 大地构造与成矿学, 30(2): 231-240.
[9]  钟立峰. 2006. 藏南罗布莎蛇绿岩岩石学、地球化学及其构造环境研究. 中国科学院广州地球化学研究所博士论文: 109.
[10]  周肃, 莫宣学, Mahoney J J, 张双全, 郭铁雁, 赵志丹. 2001. 西藏罗布莎蛇绿岩中辉长辉绿岩Sm?Nd定年及Pb, Nd同位素特征. 科学通报, 46(16): 1387-1390.
[11]  Ben Othman D, White W M and Patchett J. 1989. The geochemistry of marine sediments, island arc magma genesis, and crust?mantle recycling. Earth and Planetary Science Letters, 94: 1-21.
[12]  Booij E, Bettison?varga L, Farthing D and Staudigel H. 2000. Pb?isotope systematics of a fossil hydrothermal system from the Troodos ophiolite, Cyprus: Evidence for a polyphased alteration history. Geochimica et Cosmochimica Acta, 64(20): 3559-3569.
[13]  Briqueu L and Lancelor J R. 1979. Rb?Sr systematics and crustal contamination models for calc?alkaline igneous rocks. Earth and Planetary Science Letters, 43: 381-396.
[14]  Castillo P R. 1988. The Dupal anomaly as a trace of the upwelling upper mantle. Nature, 336: 667-670.
[15]  Chen J H and Pallister J S. 1981. Lead isotopic studies of the Semail ophiolite, Oman. Journal of Geophysical Research, 86: 2699-2708.
[16]  Coleman R G. 1977. Ophiolite?ancient oceanic lithosphere? Springer?Verlag Berlin Heidellberg, New York.
[17]  Dupre B and Allegre C J. 1983. Pb?Sr isotope variation in Indian Ocean basalts and mixing phenomena. Nature, 303: 142-146.
[18]  Hart S R. 1984. A large?scale isotope anomaly in the Southern Hemisphere mantle. Nature, 309: 753-757.
[19]  Hart S R. 1988. Heterogeneous mantle domains: Signatures, genesis and mixing chronologies. Earth and Planetary Science Letters, 90: 273-296.
[20]  Jacobsen S B and Wasserburg G J. 1979. Nd and Sr isotopic study of bay of islands ophiolite complex and the evolution of the source of mid?ocean ridge basalts. Journal of Geophysical Research, 84: 7429-7445.
[21]  Janney P and Castillo P. 1997. Geochemistry of Mesozoic Pacific mid?ocean ridge basalt: Constraints on melt generation and evolution of the Pacific upper mantle. Journal of Geophysical Research, 102: 5207-5229.
[22]  Janney P E and Castillo P R. 1996. Basalts from the Central Pacific basin: Evidence for the origin of Cretaceous igneous complexes in the Jurassic western Pacific. Journal of Geophysical Research, 101: 2875-2893.
[23]  Mahoney J J, Frei R, Tejada M L G, Mo X X, Leat P T and N?Gler T F. 1998. Tracing the Indian Ocean mantle domain through time: Isotope results from old west Indian, East Tethyan, and South Pacific seafloor. Journal of Petrology, 39: 1285-1306.
[24]  McCulloch M T, Gregory R T, Wasserburg G J and Taylor H P J. 1980. A neodymium, strontium and oxygen isotopic study of the Cretaceous Samail ophiolite and implication for the petrogenesis and seawater?hydrothermal alteration of oceanic crust. Earth and Planetary Science Letters, 46: 201-211.
[25]  Metcalfe I. 1996. Pre?Cretaceous evolution of SE Asian terranes // Hall R and Blundell D(eds). Tectonic evolution of Southeast Asia. Geological Society of London Special Publication 106:97-122.
[26]  Xu J F and Castillo P R. 2004. Geochemical and Nd?Pb isotopic characteristics of the Tethyan asthenosphere: Implications for the origin of the Indian Ocean mantle domain // Flower M(ed). Tectonophysics, Special Issue 393: 9-27.
[27]  Xu J F, Castillo P R, Li X H, Xue Y Y, Zhang B R and Han Y W. 2002. MORB?type rocks from the Paleo?Tethyan Mian?Lueyang northern ophiolite in the Qinling Mountains, central China: Implications for the source of the low 206Pb/204Pb and high 143Nd/144Nd mantle component in the Indian Ocean. Earth and Planetary Science Letters, 198: 323-337.
[28]  Zhang Q, Zhou D J and Shen L P. 1992. Pb isotopic anomaly in ophiolite and oceanic island basalts, Western Yunnan // Memory of lithosphere and tectonic evolution research. Beijing: Seismic Press, No.1: 102-105.
[29]  Zhang S Q, Mahoney J J, Mo X X, Ghazi A M, Milani L, Crawford A J, Guo T Y and Zhao Z D. 2005. Evidence for a widespread Tethyan upper mantle with Indian?Ocean?type isotopic characteristics. Journal of Petrology, 46(4): 829-858.
[30]  Zhou M F and Robinson P T. 1997. Origin and tectonic environment of podiform chromite deposits. Economic Geology, 92: 259-262.
[31]  Zhou M F, Robinson P T, Malpas J and Li Z J. 1996. Podiform chromitites in the Luobusa ophiolite (Southern Tibet): Inplications for melt?rock interaction and chromite segregation in the upper mantle. Journal of Petrology, 37: 3-21.
[32]  Zhou M F, Robinson P T, Malpas J, Edwards S J and Qi L. 2005. REE and PGE geochemical constraints on the formation of dunites in the Luobusa ophiolite, Southern Tibet. Journal of Petrology, 47: 1-25.
[33]  Moores E M, Kellogg L H and Dilek Y. 2000. Tethyan ophiolites, mantle convection, and tectonic "historical contingency": A resolution of the "ophiolite conundrum" // Dilek Y, Moores E M, Elthon D & Nicolas A (eds). Ophiolites and oceanic crust: New insights from field studies and the ocean drilling program. Geological Society of America, Special Papers 349: 3-12.
[34]  Plank T and Langmuir C H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145: 325-394.
[35]  Stacey J S and Kramers J D. 1975. Approximation of terrestrial lead isotope evolution by a two?stage model. Earth and Planetary Science Letters, 26: 207-221.
[36]  Weis D, Bassias Y, Gautier I and Mennessier J P. 1989. Dupal anomaly in existence 115Ma ago: Evidence from isotopic study of the Kergulen Plateau (south Indian Ocean). Geochimica et Cosmochimica Acta, 53: 2125-2131.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133