全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

TTG岩系Nb~Ta~La分馏特征的地球化学模拟:对太古宙板块俯冲与大陆地壳生长机制的约束

, PP. 95-104

Keywords: TTG,Nb/Ta比值,地球化学模拟,板块俯冲,地壳生长,太古宙

Full-Text   Cite this paper   Add to My Lib

Abstract:

TTG的Nb/Ta比值以及Nb、Ta相对于La(代表LILE)的亏损取决于部分熔融体系中金红石、角闪石作为残留相矿物存在与否。本研究采用金红石和低Mg#角闪石的微量元素分配系数模拟部分熔融过程中Nb?Ta?La的分馏。模拟结果表明:如果与TTG熔体平衡的残留相是不含金红石的石榴角闪岩,熔体Nb/Ta比值低于源岩但Ta含量不低于La;若残留相是含金红石的榴辉岩,熔体Nb、Ta的含量低于La但Nb/Ta比值高于源岩。所以,TTG熔体的残留相应为含有金红石和相对低Mg的钙质角闪石的角闪榴辉岩。前者使熔体的Nb、Ta相对于LILE亏损,后者平衡金红石导致的熔体Nb?Ta分馏效应。满足形成常见的低Nb/Ta比值且Nb、Ta相对于LILE亏损的TTG的成岩机制是:俯冲洋壳玄武岩含水条件下的部分熔融,或科马提质玄武岩在增厚地壳下部的失水熔融。对应的地球动力学环境分别是俯冲带或水平运动导致的地壳块体碰撞叠复增厚带,暗示在早太古时期地球表层已经出现板块构造。与俯冲过程伴生的岩浆作用以及与碰撞叠复作用相关的科马提质玄武岩失水熔融作用是太古宙大陆地壳的重要生长方式。太古宙TTG岩系的Nb/Ta比值具有重要的成岩指示意义。

References

[1]  Clemens J D. 1990. The granulite?granite connexion // Vielzeuf D and Vidal P (eds). Granulites and custal differentiation. Kluwer Academic Publishers, Dordrecht: 25-36.
[2]  Clemens J D. 2005. Melting of the continental crust: Fluid regimes, melting reactions and source?rock fertility // Brown M and Rushmer T (eds). Evolution and differentiation of the continental crust. Cambridge University Press, Cambridge: 297-331.
[3]  Condie K C. 2001. Mantle plumes and their record in earth history. Cambridge University Press, Cambridge: 1-305.
[4]  Eggins S, Rudnick R and McDonough W. 1998. The composition of peridotites and their minerals: A laser?ablation ICP?MS study. Earth Planet Sci Lett, 154: 53-71.
[5]  Ewart A and Griffin W L. 1994. Application of proton?microprobe data to trace?element partitioning in volcanic rocks. Chemical Geology, 117: 251-284.
[6]  Foley S. 2008. A trace element perspective on Archean crust formation and on the presence or absence of Archean subduction // Condie K C and Pease V (eds). When did plate tectonics begin on planet earth? Geological Society of America Special Paper, No. 440: 31-50.
[7]  Kleinhanns I C, Kramers J D and Kamber B S. 2003. Importance of water for Archaean granitoid petrology: A comparative study of TTG and potassic granitoids from Barberton Mountain Land, South Africa. Contrib Mineral Petrol, 145: 377-389.
[8]  Komiya T, Hayahi M, Maruyama S and Yurimoto H. 2002. Intermediate?P?type Archean metamorphism of the Isua supracrustal belt: Implications for secular change of geothermal gradients at subduction zones and for Archean plate tectonics. American Journal of Sciences, 302: 806-826.
[9]  Le Maitre R W et al. 2002. Igneous Rocks: A classification and glossary of terms (2nd Edition). Cambridge University Press, Cambridge: 1-236.
[10]  Martin H. 1999. Adakite magma: Modern analogues of Archean granitoids. Lithos, 46: 411-429.
[11]  Patino Douce A E. 1999. What do experiments tell us about the relative contributions of crust and mantle to the origins of granitic magmas? // Castro A, Fernandez C and Vigneresse J L (eds). Understanding granites: Intergrating new and classical techniques. Geological Society, London, Special Publication, 168: 55-75.
[12]  Percival J A. 1994. Archean high?grade metamorphism // Condie K C (ed). Archean crustal evolution. Elsevier, Amsterdam: 315-355.
[13]  Prouteau G, Maury R C, Scaillet B and Pichavant M. 1999. Fluid?present melting of oceanic crust in subduction zones. Geology, 27: 1111-1114.
[14]  Prouteau G, Scaillet B, Pichavant M and Maury R. 2001. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature, 410: 197-200.
[15]  Rapp R P, Shimizu N and Norman M D. 2003. Growth of early continental crust by partial melting of eclogite. Nature, 425: 605-609.
[16]  Robertson J K and Wyllie P J. 1971. Rock?water systems, with special reference to the water?deficient region. American Journal of Sciences, 271: 252-277.
[17]  Schmidt M W, Dardon A, Chazot G and Vannucci R. 2004. The dependence of Nb and Ta rutile?melt partitioning on melt composition and Nb/Ta fractionation during subduction processes. Earth Planet Sci Lett, 226: 415-432.
[18]  Stevens G and Clemens J D. 1993. Fluid?absent melting and the roles of fluids in the lithosphere: A slanted summary? Chemical Geology, 108: 1-17.
[19]  Sun S?S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and processes // Saunders A D and Norry M J (eds). Magmatism in the ocean basins. Geological Society, London, Special Publication, 42: 313-345.
[20]  Tiepolo M, Bottazzi P, Foley S F, Oberti R, Vannucci R and Zanetti B. 2001. Fractionation of Nb and Ta from Zr and Hf at mantle depths: The role of Titanian paragasite and kaersutite. J Petrol, 42: 221-232.
[21]  Tiepolo M, Oberti R, Zanetti B, Vannucci R and Foley S F. 2007. Trace?element partitioning between amphibole and silicate melt. Review in Mineralogy and Geochemistry, 67: 417-452.
[22]  Vigneresse J?L. 2004. Toward a new paradigm for granite generation. Trans Royal Soc Edinburgh Earth Sci, 95: 11-22.
[23]  Wyllie P J. 1971. The Dynamic Earth: A Textbook in Geosciences. John Wiley and Sons, New York: 1-416.
[24]  Xiong X L. 2006. Trace element evidence for growth of early continental crust by melting of rutile?bearing hydrous eclogite. Geology, 34: 945-948.
[25]  韩江伟, 熊小林, 吴金花. 2006. 埃达克岩的Na亏损及其对地幔Na交代的指示意义. 大地构造与成矿学, 30(3): 381-391.
[26]  穆克敏, 李树勋. 1988. 结晶岩岩石物理化学. 北京: 地质出版社, 1-330.
[27]  熊小林. 2008. 埃达克岩的实验研究 // 张旗, 王焰, 熊小林, 李承东. 埃达克岩和花岗岩:挑战与机遇. 北京: 中国大地出版社: 37-44.
[28]  Armstrong R L. 1991. The persistent myth of crustal growth. Australian Journal of Earth Sciences, 38: 613-630.
[29]  Barker F and Arth J G. 1976. Generation of trondjemite?tonalite liquids and Archean trondjemite?basalt suites. Geology, 4: 596-600.
[30]  Barth M G, Foley S F and Horn I. 2002. Partial melting in Archean subduction zones: Constraints from experimentally determined trace element partition coefficients between eclogitic minerals and tonalitic melts under upper mantle conditions. Precambrian Research, 113: 323-340.
[31]  Benn K, Mareschal J?C and Condie K C. 2006. Archean geodynamics and environments. AGU Geophysical Monograph, 164: 1-320.
[32]  Brown M. 2006. A duality of thermal regimes is the hallmark of plate tectonics since the Neoarchean. Geology, 34: 961-964.
[33]  Condie K C and Kr?ner A. 2008. When did plate tectonics begin? Evidence from the geologic record // Condie K C and Pease V (eds). When did plate tectonics begin on planet earth? Geological Society of America Special Paper, No. 440: 281-294.
[34]  Condie K C and Pease V. 2008. When did plate tectonics begin on planet earth? Geological Society of America Special Paper, No. 440: 1-294.
[35]  Foley S, Tiepolo M and Vannucci R. 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417: 837-840.
[36]  Furnes H, de Wit M, Staudigel H, Rosing M and Muehlenbachs K. 2007. A vestige of Earth′s oldest ophiolite. Science, 315: 1704-1707.
[37]  Green T H. 1982. Anatexis of mafic crust and high pressure crystallization of andesite // Thorpe R S (ed). Andesites. John Wiley and Sons, New Jersey: 465-487.
[38]  Kamber B S, Ewart A, Collerson K D, Bruce M C and McDonald G D. 2002. Fliud?mobile trace element constraints on the role of slab melting and implications for Archaean crustal growth models. Contrib Mineral Petrol, 144: 38-56.
[39]  Kennedy A K, Lofgren G E and Wasserburg G J. 1993. An experimental study of trace?element partitioning between olivine, orthopyroxene and melt in chondrules?equilibrium values and kinetic effects. Earth Planet Sci Lett, 115: 177-195.
[40]  Klein M, Stosch H G and Seck H A. 1997. Partitioning of high field strength and rare earth elements between amphibole and quartz?dioritic to tonalitic melt: An experimental study. Chemical Geology, 138: 257-271.
[41]  Martin H and Moyen J F. 2002. Secular changes in tonalite?trondhjemite?granodiorite composition as markers of the progressive cooling of Earth. Geology, 30: 319-322.
[42]  Martin H, Smithies R H, Rapp R P, Moyen J?F and Champion D C. 2005. An overview of adakite, tonalite?trondhjemite?granodiorite (TTG) and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79: 1-24.
[43]  Moyen J F. 2009. High Sr/Y and La/Yb ratios: The meaning of the "adakitic signiture". Lithos, 112: 556-574.
[44]  Moyen J F and Stevens G. 2006. Experimental constraints on TTG petrogenesis: Implications for Archean geodynamics // Benn K, Mareschal J?C and Condie K C (eds). Archean geodynamics and environments. AGU Geophysical Monograph, 164: 149-175.
[45]  Moyen J F, Stevens G and Kisters A. 2006. Record of mid?Archean subduction from metamorphism in the Barberton terrain, South Africa. Nature, 442: 559-562.
[46]  Nutman A P, Bennett V C, Friend C R L and Norman M D. 1999. Meta?igneous (non?gneissic) tonalities and quartz?diorites from an extensive ca. 3800Ma terrain south of the Isua supracrustal belt, southern West Geenland. Contrib Mineral Petrol, 137: 364-388.
[47]  Stüwe K. 2007. Geodynamics of the lithosphere: An introduction (2nd Edition). Springer?Verlag, Berlin: 1-493.
[48]  Xiong X L, Adam J and Green T H. 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chemical Geology, 218: 339-359.
[49]  .

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133