全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

成矿金属元素的气相运移研究进展

, PP. 83-91

Keywords: 气相,金属元素迁移,热液矿床,流体包裹体,熔融包体

Full-Text   Cite this paper   Add to My Lib

Abstract:

尽管早在360余年前就有人提出了金属元素气相运移的概念,但在近代矿床学和矿床地球化学研究中却一直没有予以充分的重视。现代陆上和海底火山喷气中金属元素的分析表明很多金属元素在火山气中的含量相当高,具有直接形成金属矿床的潜力。随着现代分析技术的发展,特别是同步加速器?XRF、PIXE、LAM?ICP?MS等的出现,使得我们可以直接测定流体包裹体的微量元素组成,取得了富气相的流体包体中Au、Cu、Mo等元素的含量显著的高于液相包体的重要发现。熔融包体的研究结果也表明岩浆沸腾作用在热液矿床的成矿过程中可能起着重要的作用,在岩浆的结晶过程中可能有高达65%的挥发份逸出,而Cu、Au等金属元素强烈的选择性进入气相而非熔体相,说明岩浆演化早期的去气过程对斑岩等热液矿床的形成可能具有重要的控制。气相对金属元素溶解度的实验研究亦表明,气相对金属的溶解和迁移能力比人们想象的要高得多。所以,气相运移可能在一些热液矿床(特别是在蒸气相占重要地位的高温热液矿床)的成矿过程中可能起着重要的作用。

References

[1]  李光明, 芮宗瑶. 2004. 西藏冈底斯成矿带斑岩铜矿的成岩成矿年龄. 大地构造与成矿学,28(2): 165-170.
[2]  李九玲, 亓锋, 李铮, 韩璐, 任天祥, 郭立鹤, 邬立言. 2004. 金在气相中迁移与有机质演化生烃关系的实验研究. 地学前缘, 11(2): 413-423.
[3]  Audétat A, Günther D and Heinrich C A. 1998. Formation of a magmatic?hydrothermal ore deposit: Insights with LA?ICP?MS analysis of fluid inclusions. Science, 279: 2091-2094.
[4]  Baker T, Achterberg E V, Ryan C G and Lang J R. 2004. Composition and evolution of ore fluids in a magmatic?hydrothermal skarn deposit. Geology, 32(2): 117-120.
[5]  Daubrée A. 1849. Recherches sur la production artificielle de quelques espèces minérales cristallines particulièrement de l''oxyde d''étain des filons titanifères des Alpes. Annales des Mines, 4e série XVI, 129-155.
[6]  Descartes R. 1644. Principia Philosophae. Amsterdam, I. Riuwertsz. 388p.
[7]  Deville C S. 1862. Lettre à M. Elie de Beaumont sur les phénomènes éruptifs de l''Italie méridionale. Compt. Rend., 54: 99-483.
[8]  Dietrich A, Lehmann B, Wallianos A, Traxel K and Palacios C. 1999. Magma mixing in Bolivian tin porphyry systems. Naturwissenschaften, 86: 40-43.
[9]  Drummond S E and Ohmoto H. 1985. Chemical evolution and mineral deposition in boiling hydrothermal systems. Economic Geology, 80: 126-147.
[10]  Eastoe C J. 1982. Physics and chemistry of the hydrothermal system at the Pangua porphyry deposit, Bougainville, Papua New Guinea. Economic Geology, 77, 127-153.
[11]  Elie de Beaumont L. 1847. Voyage métallurgique en Angleterre, ou Recueil de mémoires sur le gisement, l''exploitation et le traitement des minerais de fer, étain, plomb, cuivre et zinc, dans la Grande?Bretagne. A Dufrénoy and L élie de Beaumont, Paris, Bachelier, 1837-1839.
[12]  Farmer G L and DePaolo J D. 1984. Origin of Mesozoic and Tertiary granite in the western United States and implications for pre?Mesozoic crustal structure 2: Nd and Sr isotopic studies of unmineralized and Cu? and Mo?mineralized granite in the Precambrian craton. Journal of Geophysical Research, 89(B12), 10141-10106.
[13]  Gemmell J B. 1987. Geochemistry of metallic trace elements in fumarole condenstates from Nicaraguan and Costa Rican volcanoes. Journal of Volcanology and Geothermal Research, 33: 161-181.
[14]  Getahun A, Reed M H and Symonds R B. 1996. Mount St. Augustine Volcano fumarole wall rock alteration: mineralogy, zoning, composition and numerical models of its formation process. Journal of Volcanology and Geothermal Research, 71: 73-107.
[15]  Giggenbach W F and Matsuo S. 1991. Evaluation of results from Second and Third IAVCEI Field Workshops on Volcanic Gases, Mt Usu, Japan, and White Island, New Zealand. Applied Geochemistry, 6: 125-141.
[16]  Keith J D, Christiansen E H, Maughan D T and Waite K A. 1998. The role of mafic alkaline magmas in felsic porphyry-Cu and Mo systems. Mineral Assoc Can Short Course Series, 26: 211-243.
[17]  Keith J D, Whitney J A, Hattori K, Ballantyne G H, Christiansen E H, Barr D L, Cannan T M and Hook C J. 1997. The role of magmatic sufides and mafic alkaline magmas in the Bingham and Tintic ming district, Utah. Journal of Petrology, 38: 1659-1690.
[18]  King P L, Vennemann T W, Holloway J R, Hervig R L, Lowenstern J B and Forneris J F. 2002. Analytical techniques for volatiles: a case study using intermediate (andesitic) glasses. American Mineralogist, 87(8-9): 1077-1089.
[19]  Korzhinsky M A, Tkachenko S I, Schmulovich K L, Taran Y A and Steinberg G S. 1994. Discovery of a pure rhenium mineral at Kudriavy volcano. Nature, 369: 51-52.
[20]  Krauskopf K B. 1957. The heavy metal content of magmatic vapor at 600℃. Economic Geology, 52: 786-807.
[21]  Krauskopf K B. 1964. The possible Role of volatile metal compounds in ore genesis. Economic Geology, 59: 22-45.
[22]  Lacroix A. 1907. Les mineraux des fumerolles de l''eruption du Vesuve en Avril 1906. Bull Soc Min Fran, 30: 219-266.
[23]  Le Guern F and Bernard A. 1982. A new method for sampling and analyzing sublimates. Application to Merapi Volcano, Java. Am. Journal of Volcanology and Geothermal Research, 12: 133-146.
[24]  Lowenstern J B, Mahood G A, Rivers M L and Sutton S R. 1991. Evidence for extreme partitioning of copper into a magmatic vapor phase. Science, 252: 1405-1409.
[25]  Mavrogenes J A, Berry A J, Newville M and Sutton S R. 2002. Copper speciation in vapor?phase fluid inclusions from the Mole Granite, Australia. American Mineralogist, 87: 1360-1364.
[26]  Migdisov A A, Williams?Jones A E and Suleimenov O M. 1999. The solubility of chlorargyrite (AgCl) in water vapor at elevated temperatures and pressures. Geochimica et Cosmochimica Acta, 63: 3817-3827.
[27]  Olmez I, Finnegan D L and Zoller W H. 1986. Iridium emissions from Kilauea volcano. Journal of Geophysical Research, B91 (1): 653- 663.
[28]  Peregoedova A, Barnes S?J and Baker D. 2003. Transport of platinum?group elements in a S?dominated vapor at magmatic temperatures. Abstracts with Programs - Geological Society of America, 35( 6): 231.
[29]  Pokrovski G S, Roux J and Harrichoury J?C. 2005. Fluid density control on vapor?liquid partitioning of metals in hydrothermal systems. Geology, 33(8): 657-660.
[30]  Pryce W. 1778. Mineralogia Cornubiensis. London: J Phillips (Printers), 331 pp.
[31]  Rempel K U, Migdisov A A and Williams?Jones A E. 2005. The solubility and speciation of molybdenum in water vapour at elevated temperatures and pressures: Implications for ore genesis. Geochimica et Cosmochimica Acta, in printing (on line).
[32]  Rusk B G, Reed M H, Dilles J H, Klemm L M and Heinrich C A. 2004. Compositions of magmatic hydrothermal fluids determined by LA?ICP?MS of fluid inclusions from the porphyry copper?molybdenum deposit at Butte, MT. Chemical Geology, 210: 173-199.
[33]  Shmulovich K I and Churakov S V. 1998. Natural fluid phases at high temperatures and low pressures. Journal of Geochemical Exploration, 62: 183-191.
[34]  Sparks S R J, Sgurdsson H and Wilson L. 1977. Magma mixing: a mechanism for triggering acid explosive eruptions. Nature, 267: 315-318.
[35]  Spycher N F and Reed M H. 1989. Evolution of a Broadlands?type epithermal fluid along alternative P?T path; Implications for the transport and deposition of base, precious and volatile metals. Economic Geology, 84: 328-359
[36]  Steno N S. 1669. De Solido intra Solidum naturaliter Contento Dissertationis Prodromus. Florence, 78p.
[37]  Symonds R B and Reed M H. 1993. Calculation of multicomponent chemical equilibria in gas?solid?liquid systems; calculation methods, thermochemical data, and applications to studies of high?temperature volcanic gases with examples from Mount St. Helens. American Journal of Sciences, 293(8): 758-864.
[38]  Symonds R B, Reed M H and Rose W I. 1992. Origin, speciation, and fluxes of trace?element gases at Augustine volcano, Alaska: insights into magma degassing and fumarolic processes. Geochimica et Cosmochimica Acta, 56 (2): 633-657.
[39]  Symonds R B, Rose W I, Reed M H, Lichte F E and Finnegan D L. 1987. Volatilization, transport and sublimation of metallic and non?metallic elements in high temperature gases at Merapi Volcano, Indonesia. Geochimica et Cosmochimica Acta, 51(8): 2083-2101.
[40]  Symonds R B, Rose W I, Bluth G J and Gerlach T M. 1994. Volcanic?gas studies: Methods, results and applications. Review in Mineralogy, 30: 1-66.
[41]  Taran Y A, Bernard A, Gavilanes J C and Africano F. 2000. Native gold in mineral precipitates from high?temperature volcanic gases of Colima volcano, Mexico. Applied Geochemistry, 15: 337-346.
[42]  Taran Y A, Hedenquist J W, Korzhinsky M A, Tkachenko S I and Shulovich K I. 1995. Geochemistry of magmatic gases from Kurdryavy volcano, Iturup, Kuril Islands. Geochimica et Cosmochimica Acta, 59: 1749-1761.
[43]  Ulrich T, Gunther D and Heinrich C A. 1999. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits. Nature, 399: 676-679.
[44]  Walker A L and Walker W J. 1956. The origin and nature of ore deposits. Colorado Springs, Walker Associates, 384p.
[45]  Williams T J, Candela P A and Piccoli P M. 1995. The partitioning of copper between silicate melts and two?phase aqueous fluids: an experimental investigation at 1 kbar, 800℃, and 0.5 kbar, 850℃. Contributions to Mineralogy and Petrology, 121: 388-399.
[46]  Williams?Jones A E and Heinrich C A. 2005. Vapor transport of metals and the formation of magamtic?hydrothermal ore deposits. Economic Geology, 100: 1287-1312.
[47]  Williams?Jones A E, Migdisov A A, Archibald S M and Xiao Z. 2002. Vapor?transport of ore metals. In: Hellmann R and Wood S A (eds). Water?rock interactions, ore deposits, and environmental geochemistry: A tribute to David A Crerar. The Geochemical Society, Special Publication, 7: 279-305.
[48]  Wood S A. 1987. Thermodynamic calculations of the volatility of the platinum group elements (PGE): The PGE content of fluids at magmatic temperatures. Geochimica et Cosmochimica Acta, 51: 3041-3050.
[49]  Yang K and Scott S D. 2005. Vigorous exsolution of volatiles in the magma chamber beneath a hydrothermal system on the modern sea floor of the Easter Manus back?arc basin, Western Pacific: Evidence from melt inclusions. Economic Geology, 100: 1085-1096.
[50]  陈天虎, 岳书仓. 2001. 热液矿床中气相成矿作用. 合肥工业大学学报(自然科学版), 24(4): 470-476.
[51]  姜泽春, 章振根. 1996. 金的气相迁移探索. 地质地球化学,(2): 23-26.
[52]  芮宗瑶, 艾永德, 王龙生. 1996. 金属矿床学研究的热点. 地质论评, 42 (4) : 334- 340.
[53]  尚林波, 胡瑞忠, 樊文苓. 2004. 元素在气相中迁移的实验研究进展. 地球科学进展, 19(2): 245-249.
[54]  王兴谋, 夏斌, 陈根文, 阎汉杰, 陈海云, 郭栋. 2004. 中国东部地区新生代岩浆活动对区域性CO2形成时间的制约. 大地构造与成矿学,28(3):338-344.
[55]  Anderson A T. 1976. Magma mixing: petrological process and volcanological tool. Journal of Volcanology and Geothermal Research, 1: 3-33.
[56]  Archibald S M, Migdisov A A and Williams?Jones A E. 2001. The stability of Au?chloride complexes in water vapor at elevated temperatures and pressures. Geochimica et Cosmochimica Acta, 65: 4413-4423.
[57]  Archibald S M. 2002. The role of vapour in the transport and deposition of metals in ore?forming systems. Doctorate thesis, Department of Earth and Planetary Sciences, McGill University, Canada. 212p.
[58]  Archibald S M, Migdisov A A and Williams?Jones A E. 2002. An experimental study of the stability of copper chloride complexes in water vapor at elevated temperatures and pressures. Geochimica et Cosmochimica Acta, 66(9): 1611-1619.
[59]  Barnes H L. 1997. Geochemistry of hydrothermal ore deposits -3rd edition. New York, John Wiley and Sons, 972p.
[60]  Bateman A M. 1950. Economic mineral deposits. New York: John Wiley and Sons, 916 pp.
[61]  Brown J S. 1948. Ore genesis: a metallurgical interpretation, an alternative to the hydrothermal theory. Hopewell, N J, Hopewell Press, 204 p.
[62]  Bunsen M R. 1853. Recherches sur la formation des roches volcaniques en Islande. Ann Chim Phys, 3rd Series 38: 215-289.
[63]  Burnham C W. 1979. Magmas and hydrothermal fluids. In: Barnes H L(ed.), Geochemistry of hydrothermal ore deposits, 2nd ed. Wiley, Toronto, 798 p.
[64]  Canadela P A. 1997. A review of shallow, ore?related granites: textures, volatiles, and ore metals. Journal of Petrology, 38(12): 1619-1633.
[65]  Candela P A and Blevin P L. 1995. Do some miarolitic granites preserve evidence of magmatic volatile phase permeability? Economic Geology, 90:2310-2316.
[66]  Candela P A and Holland H D. 1984. The partitioning of copper and molybdenum between silicate melts and aqueous fluids. Geochimica et Cosmochimica Acta, 48(2): 373-380.
[67]  Candela P A. 1989. Felsic magmas, volatiles, and metallogenesis. Review of Economic Geology, 4: 223-233.
[68]  Carten R B, Geraghty E P, Walker B M and Shannon J R. 1988. Cyclic development of igneous features and their relationship to high?temperature hydrothermal features in the Henderson porphyry molybdenum deposit, Colorado. Economic Geology, 83: 266-296.
[69]  Cashman K V and Mangan M T. 1994. Physical aspects of magmatic degassing II: Constraints on vesiculation processes from textural studies of eruptive products. In: Carroll M R and Holloway J R (eds). Volatiles in magams. Mineralogical Society of America, 30: 447-478.
[70]  Charpentier J F W. 1778. Mineralogische Geographie der Churs?chsischen Lande. Leipzig.
[71]  Charpentier J F W. 1799. Beobachtung über die Lagerst?tte der Erze, haupts?chlich aus den s?chsischen Gebirgen. Leipzig.
[72]  Daubrée A. 1841. Mémoire sur le gisement, la constitution et l′origine des amas de minerai d′étain. Annales des mines, 3e série XX, 65-112.
[73]  Hedenquist J W and Lowenstern J B. 1994. The role of magmas in the formation of hydrothermal ore deposits. Nature, 370: 519-527.
[74]  Heinrich C A, Günther D, Audétat A, Ulrich T and Frischknecht R. 1999. Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions. Geology, 27: 755-758.
[75]  Heinrich C A, Ryan C G, Mernagh T P and Eadington P J. 1992. Segregation of ore metals between magmatic brine and vapor: a fluid inclusion study using PIXE Microanalysis. Economic Geology, 87: 1566-1583.
[76]  Henley R W and McNabb A. 1978. Magmatic vapor plumes and ground?water interaction in porphyry copper emplacement. Economic Geology, 73(1): 1-20.
[77]  Huppert H E, Sparks R J S and Turner J S. 1982. Effects of volatiles on mixing in calc?alkaline magma systems. Nature, 297: 554-557.
[78]  Hurwitz A and Navon O. 1994. Bubble nucleation in rhyolitic melts: Experiments at high pressure, and water content. Earth and Planetary Science Letters, 122: 267-285.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133