Ogura, Y. and M.-T. Liou, The structure of a midlatitude squall line: A case study, J. Atmos. Sci., 1980, 37, 553~567.
[2]
Trier, S, B., W. C. Skamarock, M. A. LeMone, D. B. Parsons and D. P. Jorgensen, Structure and evolution of the 22 February 1993 TOGA COARE squall line: Numerical simulation, J. Atmos. Sci., 1996, 53, 2861~2886.
[3]
Trier, S. B., W. C. Skamarock and M. A. LeMone, Structure and evolution of the 22 February 1993 TOGA COARE squall line: Organization mechanisms inferred from numerical simulation, J. Atrnos. Sci., 1997, 54, 386~407.
[4]
Jorgensen, D. P., M. A. LeMone and S. B. Trier, Structure and evolution of the 22 February 1993 TOGA COARE squall line: Aircraft observations of precipitation, circulation, and surface energy fluxes, J. Atmos. Sci,1997, 54, 1961~1985.
[5]
Hemler, R. S., F. B. lipps and B. B. Ross, A simulation of a squall line using a nonhydrostatic cloud model with a 5 km horizontal grid, Mon. Wea. Rev., 1991, 119(12), 3012~3033.
[6]
Zhang, D.-L. and J. M. Fritsch, Numerical simulation of meso-βscale structure and evolution of the 1977Johnstown flood. Part I: Model description and verification, J. Atrnos. Sci., 1986, 43, 1913~1943.
[7]
Zhang, D.-L. and J. M. Fritsch, Numerical simulation of meso-βscale structure and evolution of the 1977Johnstown flood. Part II: Inertially stable warm-core vortex and the mesoscale convective complex, J. Atrnos.Sci, 1987, 44. 2593~2612.
[8]
Liu, Y. B., D.-L. Zhang and M. K. Yau, A multiscale numerical study of Hurricane Andrew (1992). Part I: Explicit simulation and verification, Mon. Wea. Rev., 1997, 125, 3073~3093.
Zhang, D.-L. and J. M. Fritsch, Numerical sensittivity experiments of varying model physics on the structure,evolution and dynamics of two mesoscale convective system, J. Atrnos. Sci., 1988, 45, 261~293.