全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
大气科学  2009 

由地基微波辐射计测量得到的北京地区水汽特性的初步分析

DOI: 10.3878/j.issn.1006-9895.2009.02.16

Keywords: 地基微波辐射计,水汽,日变化特征,温度,相关系数

Full-Text   Cite this paper   Add to My Lib

Abstract:

首先对比分析了三种测量水汽技术(地基微波辐射计、探空、GPS)之间的差异,得到地基微波辐射计与探空的差值为0.281cm,GPS与探空的差值为0.728cm,地基微波辐射计与GPS的差值为0.322cm。接着就地基12通道微波辐射计测量得到的水汽总量(简称PWV),分析了北京地区水汽在四个季节中的日变化特征。秋季日变化差为0.162cm,冬季日变化差为0.130cm,春季日变化差为0.229cm,夏季日变化差为0.276cm。另外,北京地区四个季节中水汽最大值/最小值出现频率最高的时间段呈现一定的特征。即四个季节中在北京时间00:00到00:59和23:00到23:59这两个时间段中,水汽出现最大值/最小值的概率较其他时间段都高,其中冬季在北京时间10:00到10:59之间出现最小值的概率最高。水汽总量PWV每小时变化率在四个季节中都存在这样的现象:出现正的水汽总量PWV每小时变化率的百分比与出现负的水汽总量PWV每小时变化率的百分比相当,几乎都为50%。最后就水汽与温度相关性做了分析,分别得到四个季节中各个小时水汽与温度的相关系数,结果显示各个小时水汽与温度的相关性在四个季节中,除了夏季从北京时间09:00到22:00为负相关外,其他时间段内都为正相关。而且各个小时水汽与温度的相关系数都按照秋、春、冬、夏的顺序递减。

References

[1]  陈洪滨.利用高频微波被动遥感探测大气[J].遥感技术与应用,1999,14(2):49-54.
[2]  Dominique Ruffieux, Nash J, Jeannet P, et al. 2006. The COST 720 temperature, humidity, and cloud profiling campaign: TUC [J]. Meteorologische Zeitschrift, 1:5 - 10.
[3]  Elliott W P, Gaffen D J. 1991. On the utility of radiosonde humidity archives for climate studies[J]. Bull. Amer. Meteor. Soc., 72: 1507 - 1520.
[4]  England M N, Ferrare R A, Melfi S H, et al. 1992. Atmospheric water vapor measurements: Comparison of microwave radiometry and lidar [J]. J. Geophys. Res., 97: 899-916.
[5]  Guldner J, Spankuch D. 2001. Remote sensing of the thermodynamic state of the atmospheric boundary layer by ground-based microwave radiometry[J]. J. Atmos. Oceanic Technol., 18: 925 -933.
[6]  Han Y, Westwater E. 2000. Analysis and improvement of tipping ealibration for ground-based microwave radiometers[J]. IEEE Trans. Geosei. Remote Sens., 38: 1260- 1276.
[7]  Kelly K K, Tuck A F, Davies T. 1991. Wintertime asymmetry of upper tropospheric water vapor between the Northern and Southern hemispheres [J]. Nature, 353: 244- 247.
[8]  李万彪 刘盈辉 朱元競 等.HUBEX试验地基微波辐射计的反演资料的应用研究[J].气候与环境研究,2001,(1):19-27.
[9]  廖国男.大气辐射导论[M].北京:气象出版社,2004.87.
[10]  林龙福 吕达仁.不同侧边界条件下水平有限降水云的微波辐射模式研究[J].大气科学,:.
[11]  Middleton W E K, Spilhaus A F. 1953. Meteorological Instruments[M]. University of Toronto Press, Toronto, Ont., Canada.
[12]  Prabhakara C, Short D A, Volmer B E. 1985. El Nino and atmospheric water vapor: Observations from nimbus 7 SMMR [J]. J. Climatol. Appl. Meteor., 24: 1311-1324.
[13]  Ramanathan V, Barkstrom B R, Harrison E F. 1989. Climate and the earth\\'s radiation budget [J]. Phys. Today, 42: 22- 32.
[14]  Revercomb H E, Turner D C, Tobin D D, et al. 2003. The ARM program\\'s water vapor intensive observation periods: Overview, initial accomplishments, and future challenges [J]. Bull. Amer. Meteor. Sot., 84: 217-236.
[15]  Rind D, Chiou E W, Chu W, et al. 1993. Overview of the stratospheric aerosol and gas experiment Ⅱ water vapor observations: Method, validation, and data characteristics [J]. J. Geophys. Res., 98:4835-4856.
[16]  Rocken C, Ware R, Van Hove T, et al. 1993. Sensing atmospheric water vapor with the Global Positioning System[J].Geophys. Res. Lett., 20:2631- 2634.
[17]  Rogers R R, Schwartz A P. 1991. Mesoscale fluctuations of columnar water vapor[J]. J. Appl. Meteor., 30: 1305- 1322.
[18]  Starr D, Melfi S H. 1991. The role of water vapor in climate, a strategic research plan for the proposed GEWEX water vapour project (GVaP) [C]. NASA Conference Publ. 3210:60.
[19]  Susskind J, Rosenfeld J, Reuter D, et al. 1984. Remote sensing of weather and climate parameters from HIRS2/MSU on TIROS-N [J]. J. Geophys. Res., 89: 4677-4697.
[20]  魏重.三波段地基微波辐射计联合遥感云雨大气参数的方法[J].大气科学,:.
[21]  Westwater E, Crewell S, Maztler C, et al. 2005. Principles of surface-based microwave and millimeter wave radiometric remote sensing of the troposphere[M]. Quaderni Dell Societa Italiana di Elettromagnetismo, 1, Settembre.
[22]  周秀骥.大气微波辐射及遥感原理[M].北京:科学出版社,1982..
[23]  朱元竞 胡成达.微波辐射计在人工影响天气研究中的应用[J].北京大学学报:自然科学版,:.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133