Robert, A., A stable numerical integration scheme for the primitive meteorological equations, Atmos. Ocean, 1981, 19, 680~689.
[5]
Robert, A., A semi-Lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations, J. Meteor. Soc. Japan., 1982, 60, 319~325.
[6]
Tanguay, M., A. Robert and R. Laprise, A semi-implicit semi-Lagrangian fully compressible regional forecast model, Mon. Wea. Rev., 1990, 118, 1970~1980.
[7]
Robert, A., Bubble convection experiments with a semi-implicit formulation of the Eular equations, J. Atmos. Sci., 1993, 50, 1865~1873.
[8]
Wiin-Nielsen, A., On the application of trajectory methods in numerical forecasting, Tellus, 1959, 11, 180~196.
[9]
Krishnamurti, T. N., Numerical integration of primitive equations by a quasi-Lagrangian advective scheme, J. Appl. Meteor., 1962, 1, 508~521.
[10]
Robert, A., T. L. Yee and H. Ritchie, A semi-Lagrangian and semi-implicit numerical integration scheme for multilevel atmospheric models, Mon. Wea. Rev., 1985, 113, 388~394.
[11]
Tanguay, M., E. Yakimiw, H. Ritchie and A. Robert, Advantages of spatial averaging in semi-implicit semi-Lagrangian schemes, Mon. Wea. Rev., 1992, 120, 113~123.
Klemp, J. B. and D. R. Durran, An upper boundary condition permitting internal gravity wave radiation in numerical mesoscale models, Mon. Wea. Rev., 1983, 111, 430~444.
Robert, A. and E. Yakimiw, Identification and elimination of an inflow boundary computational solution in limited area model integrations, Atmos. Ocean, 1986, 24(4), 369~385.
[17]
Jakimow, G., E. Yakimiw and A. Robert, An implicit formulation for horizontal diffusion in grid-point models, Mon. Wea. Rev., 1992, 120, 124~130.
[18]
McDonald, A., Accuracy of mutiply-upstream semi-Lagrangian advective scheme, II, Mon. Wea. Rev., 1987, 115, 1446~1450.
[19]
Achtemeier, G. L., Doppler velocity and reflectivity morphology of a severe left moving split thunderstorm, Prepr. Radar Meteor, Conf., 16th, Huston, Tex., 1975, 93~98.
[20]
Bluestein, H. B. and C. J. Sohl, Some observations of a splitting severe thunderstorm, Mon. Wea. Rev., 1979, 107, 861~873.
[21]
Fujita, T. and H. Grandoso, Split of a thunderstorm into anticyclonic and cyclonic storms and their motion as determined from numerical model experiments, J. Atmos. Sci., 1968, 25, 416~439.
[22]
Rotunno, R., On the evolution of thunderstorm rotation, Mon. Wea. Rev., 1981, 108, 577~586.
[23]
Klemp, J. B., Dynamics of tornadic thunderstorms, Annu. Rev. Fluid Mech., 1987, 19, 369~402.
[24]
Kuo, H. C. and R. T. Williams, Semi-Lagrangian solution to the invicid Bergers equation, Mon. Wea. Rev., 1990, 118, 1278~1288.
Pinty, J. P., R. Benoit, E. Richard and R. Laprise, Simple tests of a semi-implicit semi-Lagrangian model on 2D mountain wave problems, Mon. Wea. Rev., 1995, 123, 3042~3058.
[30]
Knupp, K. R. and W. R. Cotton, An intense, quasi-steady thunderstorm over mountainous terrain, Part2: Doppler radar observations of the storm morphological structure, J. Atmos. Sci., 1982, 39, 343~385.