全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
大气科学  2003 

应用区域地基全球定位系统观测分析北京地区大气总水汽量

DOI: 10.3878/j.issn.1006-9895.2003.02.10

Keywords: 地基全球定位系统,大气总水汽量,地面水汽压

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用2000年6月1日~8月11日北京地区地基全球定位系统(GlobePositioningSystem)网遥感大气总水汽量试验的观测资料,分析了北京地区夏季大气总水汽量的时空变化,研究了大气总水汽量与日平均温度、地面水汽压和降水的关系.研究结果表明:大气总水汽量存在明显的时空变化,对于地理位置基本相近的台站,海拔高度的影响比较明显,一般情况下高山站的水汽总量低于平原站;在晴天,地面水汽压与大气总水汽量有较好的相关性,而在云雨日,由于高低层大气湿度的变化常常不同步,用地面水汽压估算的大气总水汽量具有较大的偏差;大气总水汽量短时间内的快速增加往往对应有降水过程出现,但总水汽量的大小与降水量之间并没有明显的相关,在降水预报中应综合考虑总水汽量的前期平均水平、短时的增幅和峰值大小等条件的影响.

References

[1]  Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware, GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system,J. Geophys. Res., 1992, 97,15787~15801.
[2]  Rocken, C., T. Van Hove, J. Johnson, F. Solheim, R. Ware, M. Bevis, S. Chiswell, and S. Businger, GPS/Storm-GPS sensing of atmospheric water vapor for meteorology,J. Atmos. Oceanic Technol., 1995, 12, 468~478.
[3]  Businger, S., and coauthors, The promise of GPS in atmospheric monitoring. Bull. Amer. Meteor. Soc., 1996,77,5~18.
[4]  Duan, J., and coauthors, GPS Meteorology: Direct estimation of the absolute value of precipitable water,J. Appl. Meteor., 1996, 35, 830~838.
[5]  李成才、毛节泰、李建国等, GPS遥感水汽总量,科学通报,1999,3, 333~336.
[6]  王小亚、朱文耀、严豪健等,地面GPS探测大气可降水量的初步结果,大气科学,1999,23,605~612.
[7]  Li Jianguo, and Mao Jietai, The approach to remote sensing of water vapor based on GPS and linear regression Tm in eastern region of China,Acta Meteor. Sinica, 1998,12, 450~458.
[8]  Kuo, Y.-H., X. Zou, and Y.-R. Guo, Variational assimilation of precipitable water using a nonhydrostatic mesoscale adjoint model. Part I: Moisture retrieval and sensitivity experiments,Mon. Wea. Rev., 1996,124,122-147.
[9]  Gutman, S. I., D. E. Wolfe, and A. M. Simon, Development of an operational water vapor remote sensing system using GPS; A progress report. FSL Forum, 1995, 12, 21~32.
[10]  Kuo, Y.-H., X. Zou, and Y.-R. Guo, Variational assimilation of precipitable water using a nonhydrostatic mesoscale adjoint model. Part I: Moisture retrieval and sensitivity experiments, Mon. Wea. Rev.,1996,124,122-147.
[11]  Zou, X., and Y.-H. Kuo, Rainfall assimilation through an optimal control of initial and boundary conditions in a limited-area mesoscale model,Mon. Wea. Rev., 1996, 124, 2859~2882.
[12]  Yang, X., B. Sass, G. Elgered, T. R. Emardson, and J. M. Johansson, A comparison of precipitable water vapor estimates by an NWP simulation and GPS observations,J. Appl. Meteor., 1999, 38, 941~956.
[13]  Cucurull, L., B. Navascues, G. Ruffini, et al., The use of GPS to validate NWP systems: The HIRLAM model,J. Atmos. Oceanic. Technol., 2000, 17,773~787.
[14]  Zhou Xiuji et al., Atmospheric profiler and preliminary investigation on the monitoring of disastrous weather, Acta Meteor. Sinica, 1991, 5, 265~273.
[15]  杨红梅等,用单站探空资料分析对流层气柱水汽总量,气象,1998,9,8~11.
[16]  Department of Earth, Atmospheric, and Planetary Sciences of Massachusetts Institute of Technology, Scripps Institution of Oceanography of University of California at San Diego,Documentation for the GAMIT GPS Analysis Software, Release 9.6. September 1997.
[17]  杨景梅、邱金桓,我国可降水量同地面水汽压关系的经验表达式,大气科学,1996,20,620~626.
[18]  Atwater, M.A., and J.T. Ball, Comparisons of radiation computations using observed and estimated precipitable water, Appl. Meteor., 1976, 15,1319~1320.
[19]  Smith, W., Note on the relationship between total precipitable water and surface dew point, J. Appl. Meteor.,1966, 5, 726~727.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133