全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

地震波干涉偏移及预条件正则化最小二乘偏移成像方法对比

DOI: 10.6038/cjg20130123, PP. 230-238

Keywords: 偏移反演,干涉偏移,正则化

Full-Text   Cite this paper   Add to My Lib

Abstract:

地震波干涉偏移和偏移反演成像是近年来十分活跃的两个研究领域.干涉偏移提供了一个新的地震波数据成像工具,而偏移反演则提供了高逼近度地震成像.二者的共同目的是改善传统直接偏移方法的成像效果,展宽成像区域并提高成像的分辨率.本文研究干涉偏移方法和偏移反演方法对于地震成像效果的影响,探讨二者在提高成像分辨率上的异同.对于偏移反演,通过建立正则化模型,研究了预条件共轭梯度迭代正则化方法及改进措施,并通过绕射点模型数值模拟验证了该方法比直接偏移能够提高振幅的保真度和成像的分辨率.对于干涉偏移和偏移反演这两种方法,对层速度地震模型进行了数值模拟.结果表明干涉偏移和偏移反演成像方法比传统的偏移方法在成像效果上是更加有效的,因而对于实际的地震成像问题很有应用前景.

References

[1]  Snieder R, Grêt A, Douma H, et al. Coda wave interferometry for estimating nonlinear behavior in seismic velocity. Science, 2002, 295(5563): 2253-2255.
[2]  Wang Y B, Luo Y, Schuster G T. Interferometric interpolation of missing seismic data. Geophysics, 2009, 74(3): SI37-SI45.
[3]  Wapenaar K. Retrieving the elastodynamic Green''s function of an arbitrary inhomogeneous medium by cross correlation. Physics Review Letters, 2004, 93(25): 254301-1-254301-4.
[4]  崔岩, 王彦飞, 杨长春. 带先验知识的波阻抗反演正则化方法研究. 地球物理学报, 2009, 52(8): 2135-2141. Cui Y, Wang Y F, Yang C C. Regularizing method with a priori knowledge for seismic impedance inversion. Chinese J. Geophys. (in Chinese), 2009, 52(8): 2135-2141.
[5]  李振华, 王彦飞, 杨长春. 正则化偏移成像的全局优化快速算法. 地球物理学报, 2011, 54(3): 828-834. Li Z H, Wang Y F, Yang C C. A fast global optimization algorithm for regularized migration imaging. Chinese J. Geophys. (in Chinese), 2011, 54(3): 828-834.
[6]  Wang Y F, Yuan Y X. Convergence and regularity of trust region methods for nonlinear ill-posed inverse problems. Inverse Problems, 2005, 21(3): 821-838.
[7]  Nolet G, Snieder R. Solving large linear inverse problems by projection. Geophys. J. Int., 1990, 103(2): 565-568.
[8]  VanDecar J C, Snieder R. Obtaining smooth solutions to large, linear, inverse problems. Geophysics, 1994, 59(5): 818-829.
[9]  Trampert J, Leveque J J. Simultaneous iterative reconstruction technique: physical interpretation based on the generalized least squares solution. Journal of Geophysical Research, 1990, 95(B9): 12553-12559.
[10]  陶毅, 符力耘, 孙伟家等. 地震波干涉法研究进展综述. 地球物理学进展, 2010, 25(5): 1775-1784. Tao Y, Fu L Y, Sun W J, et al. A review of seismic interferometry. Progress in Geophysics (in Chinese), 2010, 25(5): 1775-1784.
[11]  Yilmaz O. Seismic Data Analysis. Investigations in Geophysics No. 10. Society of Exploration Geophysicists, Tulsa, Okla, 2001.
[12]  Chen J, Schuster G T. Resolution limits of migrated images. Geophysics, 1999, 64(4): 1046-1053.
[13]  Schuster G T. Green''s functions for migration. Abstracts of Expanded Abstracts 67th SEG meeting, 1997: 1754-1758.
[14]  Schuster G T, Hu J X. Green''s function for migration: Continuous recording geometry. Geophysics, 2000, 65(1): 167-175.
[15]  He R Q, Hornby B, Schuster G. 3D wave-equation interferometric migration of VSP free-surface multiples. Geophysics, 2007, 72(5): S195-S203.
[16]  Schuster G T, Yu J, Sheng J, Rickett J. Interferometric/daylight seismic imaging. Geophysical Journal International, 2004, 157(2): 838-852.
[17]  Schuster G T, Katz L, Followill F, et al. Autocorrelogram migration: Theory. Geophysics, 2003, 68(5): 1685-1694.
[18]  Claerbout J. Synthesis of a layered medium from its acoustic transmission response. Geophysics, 1968, 33(2): 264-269.
[19]  Bakulin A, Calvert R. Virtual source: New method for imaging and 4D below complex overburden. 74th Annual International Meeting, SEG, Expanded Abstracts, 2004: 2477-2480.
[20]  常旭, 刘伊克, 王辉等. 地震相干偏移与数据自参照偏移的关系. 地球物理学报, 2009, 52(11): 2840-2845. Chang X, Liu Y K, Wang H, et al. Seismic interferometric migration and data-referenced-only migration. Chinese J. Geophys. (in Chinese), 2009, 52(11): 2840-2845.
[21]  Wapenaar K, Draganov D, Robertsson J O A, et al. Seismic Interferometry: History and Present Status. Geophysics Reprint Series No. 26, Society of Exploration Geophysicists, 2008.
[22]  Wapenaar K, Fokkema J. Green''s function representations for seismic interferometry. Geophysics, 2006, 71(4): SI33-SI46.
[23]  Yu J H, Katz L, Followill F, et al. Autocorrelogram migration: IVSPWD test. Geophysics, 2003, 68(1): 297-307.
[24]  Yu J H, Schuster G T. Crosscorrelogram migration of inverse vertical seismic profile data. Geophysics, 2006, 71(1): S1-S11.
[25]  Hu J X, Schuster G T, Valasek P A. Poststack migration deconvolution. Geophysics, 2001, 66(3): 939-952.
[26]  Nemeth T, Wu C J, Schuster G T. Least-squares migration of incomplete reflection data. Geophysics, 1999, 64(1): 208-221.
[27]  Sj?berg T A, Gelius L J, Lecomte I. 2D deconvolution of seismic image blur. Expanded Abstracts, SEG 73th Annual Meeting, Dallas, 2003.
[28]  王彦飞, 斯捷潘诺娃 I E, 提塔连科V N等. 地球物理数值反演问题. 北京: 高等教育出版社, 2011. Wang Y F, Stepanova I E, Titarenko V N, et al. Inverse Problems in Geophysics and Solution Methods. Beijing: Higher Education Press, 2011.
[29]  Wang Y F, Yang C C. Accelerating migration deconvolution using a non-monotone gradient method. Geophysics, 2010, 75(4): S131-S137.
[30]  Aki K, Richards P G. Quantitative Seismology: Theory and Methods. San Francisco: W H Freeman and Company, 1980.
[31]  Claerbout J F. Imaging the Earth''s Interior. Oxford: Blackwell, 1985.
[32]  Stolt R H, Benson A K. Seismic Migration: Theory and Practice, Vol. 5, Handbook of Geophysical Exploration, Section I. Seismic Exploration. London: Geophysical Press, 1986.
[33]  Lecomte I. Resolution and illumination analyses in PSDM: A ray-based approach. The Leading Edge, 2008, 27(5): 650-663.
[34]  Guitton A. Amplitude and kinematic corrections of migrated images for nonunitary imaging operators. Geophysics, 2004, 69(4): 1017-1024.
[35]  Sacchi M D, Wang J, Kuehl H. Regularized migration/inversion: new generation of imaging algorithms. CSEG Recorder, 2006, 31(S1): 54-59.
[36]  Wang Y F. Preconditioning non-monotone gradient method for retrieval of seismic reflection signals. Advances in Computational Mathematics, 2012,36(2):353-376.
[37]  Marquardt D W. An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math., 1963, 11(2): 431-441.
[38]  Levenberg K. A method for the solution of certain nonlinear problems in least squares. Quart. Appl. Math., 1944, 2: 164-166.
[39]  Tarantola A. Inverse Problems Theory: Methods for Data Fitting and Model Parameter Estimation. Amsterdam: Elsevier, 1987.
[40]  Ulrych T J, Sacchi M D, Woodbury A. A Bayesian tour to inversion. Geophysics, 2000, 66: 55-69.
[41]  杨文采. 地球物理反演和地震层析成像. 北京: 地质出版社, 1989. Yang W C. Geophysical Inversion and Seismic Tomography (in Chinese). Beijing: Geological Publishing House, 1989.
[42]  王彦飞. 反演问题的计算方法及其应用. 北京: 高等教育出版社, 2007. Wang Y F. Computational Methods for Inverse Problems and Their Applications (in Chinese). Beijing: Higher Education Press, 2007.
[43]  Nolet G. Solving or resolving inadequate and noisy tomographic systems. J. Comp. Phys., 1985, 61(3): 463-482.
[44]  Yu J H, Hu J X, Schuster G T, Estill R. Prestack migration deconvolution. Geophysics, 2006, 71(2): S53-S62.
[45]  Tikhonov A N, Arsenin V Y. Solutions of Ill-posed Problems. New York: John Wiley and Sons, 1977.
[46]  Engl H W, Hanke M, Neubauer A. Regularization of Inverse Problems. Dorcrecht: Kluwer Academic Publishers, 1996.
[47]  袁亚湘. 非线性规划数值方法. 上海: 上海科学与技术出版社, 1993. Yuan Y X. Numerical Methods for Nonlinear Programming (in Chinese). Shanghai: Shanghai Science and Technology Press, 1993.
[48]  肖庭延, 于慎根, 王彦飞. 反问题的数值解法. 北京: 科学出版社, 2003. Xiao Y F, Yu S G, Wang Y F. Numerical Methods for the Solution of Inverse Problems (in Chinese). Beijing: Science Press, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133