全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

青藏高原东西向差异形变与隆升机制

DOI: 10.6038/cjg20141214, PP. 4016-4028

Keywords: 机械强度,挠曲模拟,青藏高原隆升机制,布格重力异常,地震

Full-Text   Cite this paper   Add to My Lib

Abstract:

高精度布格重力异常约束下的三维空间域挠曲形变模拟显示,大约以90°E为界,青藏高原东、西两部分的岩石圈强度存在明显的差异.在90°E以东,岩石圈有效弹性厚度为35~45km,该岩层厚度可使刚性的上地壳与上地幔岩石通过中下地壳柔塑性地层的黏滞流动产生构造解耦;地壳处于区域均衡状态,下地壳热物质的流动膨胀是地壳隆升的主控要素.而在90°E以西,断裂带严重削弱了该区域的岩石圈机械强度,岩石圈有效弹性厚度小于15km,向西逐渐减小,至喀喇昆仑断裂带变为零,断裂切穿莫霍面进入地幔,发生纯剪切构造形变;这里的地壳接近局部均衡,厚皮逆冲是地形隆升的主要因素.震源深度大于80km的地幔地震大多发生在青藏高原西部,其岩石圈深部具有的脆裂特征很好地支持了岩石圈机械强度模拟的结果.

References

[1]  Audet P, Mareschal J C. 2004. Variations in elastic thickness in the Canadian Shield. Earth and Planet. Sci. Lett., 226(1-2): 17-31.
[2]  Balakrishnan T S. 1997. Major tectonic elements of the Indian subcontinent and contiguous areas: a geophysical view. Geological Society of India, 38: 18.
[3]  Balakrishnan T S. 2003. Impact of gravity and other geophysical data on the geology of Indian subcontinent. Journal of the Virtual Explorer, 12: 83-92.
[4]  Bechtel T D, Forsyth D W, Sharpton V L, et al. 1990. Variations in effective elastic thickness of the North American lithosphere. Nature, 343(6259): 636-638.
[5]  Braitenberg C, Wang Y, Fang J, et al. 2003. Spatial variations of flexure parameters over the Tibet-Quinghai plateau. Earth Planet. Sci. Lett., 205(3-4): 211-224.
[6]  Clark M K, Royden L H. 2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 28(8): 703-706.
[7]  Dewey J F, Burke K C. 1973. Tibetan, Variscan, and Precambrian basement reactivation: Products of continental collision. The Journal of Geology, 81(6): 683-692.
[8]  Forsyth D W. 1985. Subsurface loading and estimates of the flexural rigidity of continental lithosphere. J. Geophys. Res.: Solid Earth (1978—2012), 90(B14): 12623-12632.
[9]  Jiang M, Galvé A, Hirn A, et al. 2006. Crustal thickening and variations in architecture from the Qaidam basin to the Qang Tang (North-Central Tibetan Plateau) from wide-angle reflection seismology. Tectonophysics, 412(3-4): 121-140.
[10]  Jiang X D, Jin Y, McNutt M K. 2004. Lithospheric deformation beneath the Altyn Tagh and West Kunlun faults from recent gravity surveys. J. Geophys. Res.: Solid Earth (1978—2012), 109(B5): B05406, doi: 10.1029/2003JB002444.
[11]  Jiang X D, Jin Y. 2005. Mapping the deep lithospheric structure beneath the eastern margin of the Tibetan Plateau from gravity anomalies. J. Geophys. Res.: Solid Earth (1978—2012), 110(B7): B07407, doi: 10.1029/2004JB003394.
[12]  Jin Y, Jiang X D. 2002. Lithosphere Dynamics (in Chinese). Beijing: Sciences Press, 113-119.
[13]  Kind R, Yuan X, Saul J, et al. 2002. Seismic images of crust and upper mantle beneath Tibet: Evidence for Eurasian plate subduction. Science, 298(5596): 1219-1221.
[14]  Kogan M G, McNutt M K. 1993. Gravity field over northern Eurasia and variations in the strength of the upper mantle. Science, 259(5094): 473-479.
[15]  Li Q S, Peng S P, Gao R, et al. 2003. Seismic evidence of the basement uplift in the Bayan Har tectonic belt, Qinghai, and its tectonic significance. Geological Bulletin of China (in Chinese), 22(10): 782-788.
[16]  Pérez-Gussinyé M, Lowry A R, Phipps Morgan J, et al. 2008. Effective Elastic thickness variations along the Andean margin and their relationship to subduction geometry. Geochemistry, Geophysics, Geosystems, 9(2): Q02003, doi: 10.1029/2007GC001786.
[17]  Wang Y X, Mooney W D, Yuan X C, et al. 2013. Crustal Structure of the Northeastern Tibetan Plateau from the Southern Tarim Basin to the Sichuan Basin, China. Tectonophysics, 584: 191-208.
[18]  Zhang Z J, Deng Y F, Teng J W, et al. 2011a. An overview of the crustal structure of the Tibetan plateau after 35 years of deep seismic soundings. Journal of Asian Earth Sciences, 40(4): 977-989.
[19]  Zhang Z J, Klemperer S, Bai Z M, et al. 2011b. Crustal structure of the Paleozoic Kunlun orogeny from an active-source seismic profile between Moba and Guide in East Tibet, China. Gondwana Research, 19(4): 994-1007.
[20]  Zhang Z J, Yuan X H, Chen Y, et al. 2010. Seismic signature of the collision between the east Tibetan escape flow and the Sichuan Basin. Earth and Planetary Science Letters, 292(3-4): 254-264.
[21]  England P, Houseman G. 1989. Extension during continental convergence, with application to the Tibetan Plateau. J. Geophys. Res.: Solid Earth (1978—2012), 94(B12): 17561-17579.
[22]  Gao R Q, Zhao Z Z. 2001. The Frontier Petroleum Exploration in China-Petroleum Geology of Qinghai-Tibetan Plateau (in Chinese). Beijing: Petroleum Industry Press, 28-30.
[23]  Jin Y, McNutt M K, Zhu Y S. 1994. Evidence from gravity and topography data for folding of Tibet. Nature, 371: 669-674.
[24]  Jin Y, Wang E, Jiang X D. 2008. The dynamic support and decoupling process of the Tibetan lithosphere based on the integration of flexural modeling with other geological and geophysical studies. //Burchfiel B C, Wang E. Investigations into the Tectonics of the Tibetan Plateau, GSA Special Paper, 444: 89-104.
[25]  Jordan T A, Watts A B. 2005. Gravity anomalies, flexure and the elastic thickness structure of the India-Eurasia collisional system. Earth and Planetary Science Letters, 236(3-4): 732-750, doi: 10.1016/j.epsl.2005.05.036.
[26]  Kirby J F, Swain C J. 2008. An accuracy assessment of the fan wavelet coherence method for elastic thickness estimation. Geochemistry, Geophysics, Geosystems, 9(3): Q03022, doi: 10.1029/2007GC001773.
[27]  Li S L, Zhang X K, Zhang C K, et al. 2002. A preliminary study on the crustal velocity structure of Maqin-Lanzhou-Jingbian by means of deep seismic sounding profile. Chinese J. Geophys. (in Chinese), 45(2): 210-217.
[28]  Liu M J, Li S L, Fang S M, et al. 2008. Study on crustal composition and geodynamics using seismic velocities in the northeastern margin of the Tibetan Plateau. Chinese J. Geophys. (in Chinese), 51(2): 412-430.
[29]  McNutt M K. 1983. Influence of plate subduction on isostatic compensation in northern California. Tectonics, 2(4): 399-415.
[30]  Meng Q R, Fang X. 2008. Cenozoic tectonic development of the Qaidam basin in the northeastern Tibetan Plateau. GSA Special Paper, 444: 1-24.
[31]  Ojeda G Y, Whitman D. 2002. Effect of windowing on lithosphere elastic thickness estimates obtained via the coherence method: results from northern South America. J. Geophys. Res.: Solid Earth (1978—2012), 107(B11): ETG 3-1-ETG 3-12, doi: 10.1029/200JB000114.
[32]  Parker R L. 1973. The rapid calculation of potential anomalies. Geophys, J. R. Astr. Soc., 31(4): 447-455.
[33]  Pérez-Gussinyé M, Lowry A R, Watts A B, et al. 2004. On the recovery of effective elastic thickness using spectral methods: examples from synthetic data and from the Fennoscandian Shield. J. Geophys. Res.: Solid Earth (1978—2012), 109(B10), doi: 10.1029/2003JB002788.
[34]  Pérez-Gussinyé M, Lowry A R, Watts A B. 2007. Effective elastic thickness of South America and its implications for intracontinental deformation. Geochemistry, Geophysics, Geosystems, 8(5): Q05009, doi: 10.1029/2006GC001511.
[35]  Royden L H, Burchfiel B C, King R W, et al. 1997. Surface deformation and lower crustal flow in Eastern Tibet. Science, 276(5313): 788-790.
[36]  Royden L H, Burchfiel B C, van der Hilst R D. 2008. The geological evolution of the Tibetan Plateau. Science, 321(5892): 1054-1058.
[37]  Simons F J, van der Hilst R D, Zuber M T. 2000. Spatiospectral localization of isostatic coherence anisotropy in Australia and its relation to seismic anisotropy: Implications for lithospheric deformation. J. Geophys. Res.: Solid Earth (1978—2012), 108(B5): 19163-19184.
[38]  Stewart J, Watts A B. 1997. Gravity anomalies and spatial variations of flexural rigidity at mountain ranges. J. Geophys. Res.: Solid Earth (1978—2012), 102(B3): 5327-5352.
[39]  Swain C J, Kirby J F. 2006. An effective elastic thickness map of Australia from wavelet transforms of gravity and topography using Forsyth''s method. Geophys. Res. Lett., 33(2), doi: 10.1029/2005GL025090.
[40]  Tapponnier P, Xu Z Q, Roger F, et al. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294(5547): 1671-1677.
[41]  Teng J W, Zhang Z J, Zhang X K, et al. 2013. Investigation of the Moho discontinuity beneath the Chinese mainland using deep seismic sounding profiles. Tectonophysics, 608: 202-216, doi: 10.1016/j.tecto.2012.11.024.
[42]  Thomson D J. 1982. Spectrum estimation and harmonic analysis. Proceedings of the IEEE, 70(9): 1055-1096.
[43]  Torne M, Fernàndez M, Comas M C, et al. 2000. Lithospheric structure beneath the Alboran Basin: results from 3D gravity modeling and tectonic relevance. J. Geophys. Res.: Solid Earth (1978—2012), 105(B2): 3209-3228.
[44]  Van Wees J D, Cloetingh S. 1994. A finite-difference technique to incorporate spatial variations in rigidity and planar faults into 3-D models for lithospheric flexure. Geophys. J. Int., 117(1): 179-195.
[45]  Wang Q S, An Y L. 2001. Gravity field and deep structure of Madoi-Shama region in eastern Qinghai-Xizang (Tibetan) plateau. Progress in Geophysics (in Chinese), 16(4): 4-10.
[46]  Zhang Z J, Bai Z M, Klemperer S L, et al. 2013. Crustal structure across northeastern Tibet from wide-angle seismic profiling: Constraints on the Caledonian Qilian orogeny and its reactivation. Tectonophysics, 606: 140-159, doi: 10.1016/j.tecto.2013.02.040.
[47]  Zhao W L, Morgan W J. 1987. Injection of Indian crust into Tibetan lower crust: a two-dimensional finite element model study. Tectonics, 6(4): 489-504.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133