全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于COSMIC卫星观测数据的平流层重力波的全球分布特征研究

DOI: 10.6038/cjg20141121, PP. 3668-3678

Keywords: 重力波,平流层,COSMIC

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文利用2007年1月至2012年12月的COSMIC卫星温度剖线,从中提取了垂直波长在3~10km的重力波扰动信息,进而分析了全球平流层大气重力波的分布特征.赤道地区低平流层重力波表现出明显的准两年变化,这种变化与风场的准两年变化具有明显的相关性,向下发展速度约为1km/月;赤道地区高平流层(35km以上区域)的重力波活动则存在明显的半年变化.中高纬度重力波活动主要表现为冬季强夏季弱.在南极地区存在着与急流的时间、空间以及强度变化密切相关的重力波分布特征,这说明在南极极夜急流是非常重要的一个重力波源;而在北极极夜急流的作用则没有那么强.此外,通过考察不同高度的重力波活动特征,我们发现:30km以下重力波活动较强区域主要在赤道地区且与强对流区分布基本吻合,地形诱发的以及与天气系统相关的强重力波活动在该高度范围内同样出现;而在30km以上的区域重力波活动强度分布则会出现与平流层爆发性增温以及极夜急流有关的变化.

References

[1]  Alexander S P, Luna D, Llamedo P, et al. 2010. A gravity waves study close to the Andes mountains in Patagonia and Antarctica with GPS radio occultation observations. Annales Geophysicae, 28(2): 587-595.
[2]  De la Torre A, Schmidt T, Wickert J. 2006a. A global analysis of wave potential energy in the lower stratosphere derived from 5 years of GPS radio occultation data with CHAMP. Geophysical Research Letters, 33(24), doi: 10.1029/2006GL027696.
[3]  De la Torre A, Alexander P, Llamedo P, et al. 2006b. Gravity waves above the Andes detected from GPS radio occultation temperature profiles: Jet mechanism? Geophysical Research Letters, 33(24), doi: 10.1029/2006GL027343.
[4]  Ern M, Preusse P, Gille J C, et al. 2011. Implications for atmospheric dynamics derived from global observations of gravity wave momentum flux in stratosphere and mesosphere. Journal of Geophysical Research: Atmospheres, 116(D19), doi: 10.1029/2011JD015821.
[5]  Ern M, Ploeger F, Preusse P, et al. 2014. Interaction of gravity waves with the QBO: A satellite perspective. Journal of Geophysical Research: Atmospheres, 119(5): 2329-2355.
[6]  Fetzer E J, Gille J C. 1994. Gravity-wave variance in lims temperatures. Part I: Variability and comparison with background winds. Journal of the Atmospheric Sciences, 51(17): 2461-2483.
[7]  Foelsche U, Borsche M, Steiner A K, et al. 2008. Observing upper troposphere-lower stratosphere climate with radio occultation data from the CHAMP satellite. Climate Dynamics, 31(1): 49-65.
[8]  Fritts D C, Alexander M J. 2003. Gravity wave dynamics and effects in the middle atmosphere. Reviews of Geophysics, 41(1), doi: 10.1029/2001RG000106.
[9]  Hei H, Tsuda T, Hirooka T. 2008. Characteristics of atmospheric gravity wave activity in the polar regions revealed by GPS radio occultation data with CHAMP. Journal of Geophysical Research: Atmospheres, 113(D4), doi: 10.1029/2007JD008938.
[10]  John S R, Kumar K K. 2012. TIMED/SABER observations of global gravity wave climatology and their interannual variability from stratosphere to mesosphere lower thermosphere. Climate Dynamics, 39(6): 1489-1505.
[11]  Liou Y A, Pavelyev A G, Liu S F, et al. 2007. FORMOS AT-3/COSMIC GPS radio occultation mission: Preliminary results. IEEE Transactions on Geoscience and Remote Sensing, 45(11): 3813-3826.
[12]  McDonald A J. 2012. Gravity wave occurrence statistics derived from paired COSMIC/FORMOSAT3 observations. Journal of Geophysical Research: Atmospheres, 117(D15), doi: 10.1029/2011JD016715.
[13]  Namboothiri S P, Jiang J H, Kishore P, et al. 2008. CHAMP observations of global gravity wave fields in the troposphere and stratosphere. Journal of Geophysical Research: Atmospheres, 113(D7), doi: 10.1029/2007JD008912.
[14]  Ratnam M V, Tsuda T, Jacobi C, et al. 2004a. Enhancement of gravity wave activity observed during a major Southern Hemisphere stratospheric warming by CHAMP/GPS measurements. Geophysical Research Letters, 31(16), doi: 10.1029/2004GL019789.
[15]  Ratnam M V, Tetzlaff G, Jacobi C. 2004b. Global and seasonal variations of stratospheric gravity wave activity deduced from the CHAMP/GPS satellite. Journal of the Atmospheric Sciences, 61(13): 1610-1620.
[16]  Sato K, Hasegawa F, Hirota I. 1994. Short-period disturbances in the equatorial lower stratosphere. J. Meteor. Soc. Japan, 72(6): 859-872.
[17]  Schreiner W, Rocken C, Sokolovskiy S, et al. 2007. Estimates of the precision of GPS radio occultations from the COSMIC/FORMOSAT-3 mission. Geophysical Research Letters, 34(4),doi: 10.1029/2006GL027557.
[18]  Tang Y H, Dou X K, Li T, et al. 2014. Gravity wave characteristics in the mesopause region revealed from OH airglow imager observations over Northern Colorado. Journal of Geophysical Research: Space Physics, 119(1): 630-645.
[19]  Tsuda T, Nishida M, Rocken C, et al. 2000. A global morphology of gravity wave activity in the stratosphere revealed by the GPS occultation data (GPS/MET). Journal of Geophysical Research: Atmospheres, 105(D6): 7257-7273.
[20]  References Alexander S P, Tsuda T, Kawatani Y. 2008. COSMIC GPS observations of Northern Hemisphere winter stratospheric gravity waves and comparisons with an atmospheric general circulation model. Geophysical Research Letters, 35(10), doi: 10.1029/2008GL033174.
[21]  Anthes R A, Ector D, Hunt D C, et al. 2008. The COSMIC/FORMOSAT-3 mission: Early results. Bulletin of the American Meteorological Society, 89(3): 313-333.
[22]  De la Torre A, Alexander S P. 2005. Gravity waves above Andes detected from GPS radio occultation temperature profiles: Mountain forcing? Geophysical Research Letters, 32(17), doi: 10.1029/2005GL022959.
[23]  John S R, Kumar K K. 2013. A discussion on the methods of extracting gravity wave perturbations from space-based measurements. Geophysical Research Letters, 40(10): 2406-2410.
[24]  Li T, She C Y, Liu H L, et al. 2007. Evidence of a gravity wave breaking event and the estimation of the wave characteristics from sodium lidar observation over Fort Collins, CO (41 degrees N, 105 degrees W). Geophysical Research Letters, 34(5), doi: 10.1029/2006GL028988.
[25]  Li T, Leblanc T, McDermid I S, et al. 2010. Seasonal and interannual variability of gravity wave activity revealed by long-term lidar observations over Mauna Loa Observatory, Hawaii. Journal of Geophysical Research: Atmospheres, 115(D13), doi: 10.1029/2009JD013586.
[26]  Lindzen R S, Holton J R. 1981. Turbulence and stress owing to gravity wave and tidal breakdown. Journal of Geophysical Research: Oceans, 86(C10): 9707-9714.
[27]  Rocken C, Kuo Y H, Schreiner W S, et al. 2000. COSMIC system description. Terrestrial, Atmospheric and Oceanic Sciences, 11(1): 21-52.
[28]  Wang L, Alexander M J. 2009. Gravity wave activity during stratospheric sudden warmings in the 2007—2008 Northern Hemisphere winter. Journal of Geophysical Research: Atmospheres, 114(D18), doi: 10.1029/2009JD011867.
[29]  Xiao C Y, Hu X. 2010. Analysis on the global morphology of stratospheric gravity wave activity deduced from the COSMIC GPS occultation profiles. GPS Solutions, 14(1): 65-74.
[30]  Xue X H, Liu H L, Dou X K. 2012. Parameterization of the inertial gravity waves and generation of the quasi-biennial oscillation. Journal of Geophysical Research: Atmospheres, 117(D6), doi: 10.1029/2011JD016778.
[31]  Yamashita C, England S L, Immel T J, et al. 2013. Gravity wave variations during elevated stratopause events using SABER observations. Journal of Geophysical Research: Atmospheres, 118(11): 5287-5303.
[32]  Zhang S D, Yi F, Huang C M, et al. 2010. Latitudinal and seasonal variations of lower atmospheric inertial gravity wave energy revealed by US radiosonde data. Annales Geophysicae, 28(5): 1065-1074.
[33]  Zhang Y, Xiong J G, Wan W X. 2011. Analysis on the global morphology of middle atmospheric gravity waves. Chinese Journal of Geophysics (in Chinese), 54(7): 1711-1717, doi: 10.3969/j.issn.0001-5733.2011.07.003.
[34]  Zhang Y, Xiong J G, Liu L, et al. 2012. A global morphology of gravity wave activity in the stratosphere revealed by the 8-year SABER/TIMED data. Journal of Geophysical Research: Atmospheres, 117(D21), doi: 10.1029/2012JD017676.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133