全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

2007—2012年Dstmin≤-50nT的中等以上地磁暴的行星际源统计

DOI: 10.6038/cjg20141136, PP. 3822-3833

Keywords: 地磁暴,行星际起源,行星际日冕物质抛射,共转流相互作用区

Full-Text   Cite this paper   Add to My Lib

Abstract:

地磁暴的行星际源研究是了解及预报地磁暴的关键因素之一.本文研究了2007—2012年间的所有Dstmin≤-50nT的中等以上地磁暴,建立了这些地磁暴及其行星际源的列表.在这6年中,共发生了51次Dstmin≤-50nT的中等以上地磁暴,其中9次为Dstmin≤-100nT的强地磁暴事件.对比上一活动周相同时间段发现,在这段太阳活动极低的时间,地磁暴的数目显著减少.对这些地磁暴行星际源的分析表明,65%的中等以上地磁暴由与日冕物质抛射相关的行星际结构引起,31%的地磁暴由共转相互作用区引起,这与以前的结果一致.特别的,在这个太阳活动极低时期内,共转相互作用区没有引起Dstmin≤-100nT的强地磁暴,同时,日冕物质抛射相关结构也没有引起Dstmin≤-200nT的超强地磁暴.以上结果表明极低太阳活动同时导致了共转相互作用区和日冕物质抛射地磁效应的减弱.进一步,分析不同太阳活动期间地磁暴的行星际源发现:在太阳活动低年(2007—2009年),共转相互作用区是引起地磁暴的主要原因;而在太阳活动上升期和高年(2010—2013年),大部分(75%,30/40)的中等以上地磁暴均由日冕物质抛射相关结构引起.

References

[1]  Echer E, Gonzalez W D, Tsurutani B T. 2008. Interplanetary conditions leading to superintense geomagnetic storms (Dst≤-250 nT) during solar cycle 23. Geophysical Research Letters, 35(6): L06S03, doi: 10.1029/2007GL031755.
[2]  Echer E, Tsurutani B T, Gonzalez W D. 2013. Interplanetary origins of moderate (-100 nT
[3]  Jian L, Russell C T, Luhmann J G, et al. 2006b. Properties of stream interactions at one AU during 1995—2004. Solar Physics, 239(1-2): 337-392.
[4]  Jian L K, Russell C T, Luhmann J G. 2011. Comparing solar minimum 23/24 with historical solar wind records at 1 AU. Solar Physics, 274(1-2): 321-344.
[5]  Kilpua E K J, Luhmann J G, Jian L, et al. 2014. Why have geomagnetic storms been so weak during the recent solar minimum and the rising phase of cycle 24? Journal of Atmospheric and Solar-Terrestrial Physics, 107: 12-19, doi: 10.1016/j.jastp.2013.11.001.
[6]  Wang Y M, Wang B Y, Shen C L, et al. 2014. Deflected propagation of a coronal mass ejection from the corona to interplanetary space. Journal of Geophysical Research: Space Physics, 119(7): 5117-5132, doi: 10.1002/2013JA-19537.
[7]  Wang Y M, Wang S, Ye P Z. 2002a. Multiple magnetic clouds in interplanetary space. Solar Physics, 211(1-2): 333-344.
[8]  Wang Y M, Ye P Z, Wang S, et al. 2002b. A statistical study on the geoeffectiveness of Earth-directed coronal mass ejections from March 1997 to December 2000. Journal of Geophysical Research, 107(A11): SSH 2-1-SSH 2-9.
[9]  Wang Y M, Ye P Z, Wang S. 2003a. Multiple magnetic clouds: Several examples during March-April 2001. Journal of Geophysical Research, 108(A10): 1370, doi: 10.1029/2003JA009850.
[10]  Wang Y M, Ye P Z, Wang S, et al. 2003b. Theoretical analysis on the geoeffectiveness of a shock overtaking a preceding magnetic cloud. Solar Physics, 216(1-2): 295-310.
[11]  Wang Y M, Ye P Z, Wang S, et al. 2003c. An interplanetary cause of large geomagnetic storms: Fast forward shock overtaking preceding magnetic cloud. Geophysical Research Letters, 30(13): 31-33.
[12]  Gonzalez W D, Joselyn J A, Kamide Y, et al. 1994. What is a geomagnetic storm? Journal of Geophysical Research, 99(A4): 5771-5792.
[13]  Gonzalez W D, Tsurutani B T, Clúa de Gonzalez A L. 1999. Interplanetary origin of geomagnetic storms. Space Science Reviews, 88(3-4): 529-562.
[14]  Gonzalez W D, Echer E, Clúa Gonzalez A L, et al. 2007. Interplanetary origin of intense geomagnetic storms (Dst<-100 nT) during solar cycle 23. Geophysical Research Letters, 34(6): L06101, doi: 10.1029/2006GL028879.
[15]  Gonzalez W D, Echer E, Tsurutani B T, et al. 2011. Interplanetary origin of intense, superintense and extreme geomagnetic storms. Space Science Reviews, 158(1): 69-89.
[16]  Gopalswamy N, M?kel? P, Xie H, et al. 2009. CME interactions with coronal holes and their interplanetary consequences. Journal of Geophysical Research, 114(A3): A00A22, doi: 10.1029/2008JA013686.
[17]  Gopalswamy N, Akiyama S, Yashiro S, et al. 2014. Anomalous expansion of coronal mass ejections during solar cycle 24 and its space weather implications. Geophysical Research Letters, 41(8): 2673-2680.
[18]  Jian L, Russell C T, Luhmann J G, et al. 2006a. Properties of interplanetary coronal mass ejections at one AU during 1995—2004. Solar Physics, 239(1-2): 393-436.
[19]  Li K J, Feng W, Liang H F. 2010. The abnormal 24th solar cycle-The first complete solar cycle of the new millennium. Scientia Sinica Phys., Mech. & Astron. (in Chinese), 40(10): 1293-1301.
[20]  Lugaz N, Farrugia C J. 2014. A new class of complex ejecta resulting from the interaction of two CMEs and its expected geoeffectiveness. Geophysical Research Letters, 41(3): 769-776.
[21]  Lugaz N, Manchester IV W B, Gombosi T I. 2005. Numerical simulation of the interaction of two coronal mass ejections from sun to earth. Astrophysical Journal, 634(1): 651-662.
[22]  Richardson I G. 2013. Geomagnetic activity during the rising phase of solar cycle 24. Journal of Space Weather and Space Climate, 3(A8), doi: 10.1051/swsc/2013031.
[23]  Shen C L, Wang Y M, Gui B, et al. 2011a. Kinematic evolution of a slow CME in corona viewed by STEREO-B on 8 October 2007. Solar Physics, 269(2): 389-400.
[24]  Shen C L, Wang Y M, Pan Z H, et al. 2013. Full halo coronal mass ejections: Do we need to correct the projection effect in terms of velocity? Journal of Geophysical Research: Space Physics, 118(11): 6858-6865, doi: 10.1002/2013JA018872.
[25]  Shen C L, Wang Y M, Pan Z H, et al. 2014. Full-halo coronal mass ejections: arrival at the earth. Journal of Geophysical Research: Space Physics, 119(7): 5107-5116, doi: 10.1002/2014JA020001.
[26]  Shen F, Feng X S, Wang Y M, et al. 2011b. Three-dimensional MHD simulation of two coronal mass ejections'' propagation and interaction using a successive magnetized plasma blobs model. Journal of Geophysical Research, 116(A9), doi: 10.1029/2011JA016584.
[27]  Wang Y M, Shen C L, Wang S, et al. 2004. Deflection of coronal mass ejection in the interplanetary medium. Solar Physics, 222(2): 329-343.
[28]  Xue X H, Wang Y M, Ye P Z, et al. 2005. Analysis on the interplanetary causes of the great magnetic storms in solar maximum (2000—2001). Planetary and Space Science, 53(4): 443-457.
[29]  Yu W, Farrugia C J, Lugaz N, et al. 2013. A statistical analysis of properties of small transients in the solar wind 2007—2009: STEREO and Wind observations. Journal of Geophysical Research: Space Physics, 119(2): 689-708, doi: 10.1002/2013JA019115.
[30]  Zhang J, Dere K P, Howard R A, et al. 2003. Identification of solar sources of major geomagnetic storms between 1996 and 2000. Astrophysical Journal, 582(1): 520-533.
[31]  Zhang J, Richardson I G, Webb D F, et al. 2007a. Correction to "Solar and interplanetary sources of major geomagnetic storms (Dst≤-100 nT) during 1996—2005". Journal of Geophysical Research, 112(A12): A12103, doi: 10.1029/2007JA012891.
[32]  Zhang J, Richardson I G, Webb D F, et al. 2007b. Solar and interplanetary sources of major geomagnetic storms (Dst≤-100 nT) during 1996—2005. Journal of Geophysical Research, 112(A10): A10102, doi: 10.1029/2007JA012321.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133