全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Born波路径的高斯束初至波波形反演

DOI: 10.6038/cjg20140915, PP. 2900-2909

Keywords: 全波形反演,初至波波形反演,Born波路径,高斯束,核函数,矩阵分解

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了提高表层速度反演精度,本文提出了一种新的波形反演方法.该方法只利用初至波波形信息以减少波形反演对初始模型的依赖性,降低反演多解性与稳定性.由于只利用初至波波形信息,所以该方法利用高斯束计算格林函数和正演波场,以减少正演计算量.为了避免庞大核函数的存储,该方法基于Born波路径,利用矩阵分解算法实现方向与步长的累加计算.将此基于Born波路径的初至波波形反演方法应用于理论模型实验,并与声波方程全波形反演和初至波射线走时层析方法相对比,发现该方法的反演效果略低于全波形反演方法,但明显优于传统初至波射线走时层析方法,而计算效率却与射线走时层析相当.同时,相对于全波形反演,本文方法对初始模型的依赖性也有所降低.

References

[1]  Liu Y Z, Dong L G, Li P M, et al. 2009. Fresnel volume tomography based on the first arrival of the seismic wave. Chinese J. Geophys. (in Chinese), 52(9): 2310-2320.
[2]  Métivier L, Brossier R, Virieux J, et al. 2012. Toward gauss-newton and exact newton optimization for full waveform inversion. EAGE Expanded Abstract, P016.
[3]  Mora P. 1987. Nonlinear two-dimensional elastic inversion of multi-offset seismic data. Geophysics, 52(9): 1211-1228.
[4]  Pratt R G, Shin C S, Hicks G J. 1998. Gauss-Newton and full Newton methods in frequency space seismic waveform inversion. Geophysical Journal International, 133(2): 341-362.
[5]  Schuster G T, Aksel Q B. 1993. Wave-path Eikonal travel-time inversion: Theory. Geophysics, 58(9): 1314-1323.
[6]  Sheng J M, Leeds A, Buddensiek M, et al. 2006. Early arrival waveform tomography on near-surface refraction data. Geophysics, 71(4): U47-U57.
[7]  Spetzler G, Snieder R. 2004. The Fréchet volume and transmitted waves. Geophysics, 69(3): 653-663.
[8]  Tarantola A. 1984. Inversion of seismic data in acoustic approximation. Geophysics, 49(8): 1259-1266.
[9]  Virieux J, Operto S. 2009. An overview of full-waveform inversion in exploration geophysics. Geophysics, 74(6): WCC1-WCC26.
[10]  Bae H S, Pyun S, Shin C, et al. 2012. Laplace-domain waveform inversion versus refraction-traveltime tomography. Geophysical Journal International, 190(1): 595-606.
[11]  Choi Y, Shin C, Min D J. 2007. Frequency-domain elastic full waveform inversion using the new pseudo-Hessian matrix: elastic Marmousi-2 synthetic test. SEG Expanded Abstract, 1908-1912.
[12]  Dahlen F A, Hung S H, Nolet G. 2000. Fréchet kernels for finite frequency traveltimes-I. Theory. Geophysical Journal International, 141(1): 157-174.
[13]  Devanvey A J. 1984. Geophysical diffraction tomography. IEEE Transactions on Geoscience and Remote Sensing, GE-22(1): 3-13.
[14]  Liu Y Z. 2011. Theory and applications of Fresnel volume seismic tomography [Ph. D. thesis] (in Chinese). Shanghai: Tongji University.
[15]  Liu Y Z, Dong L G, Wang Y W, et al. 2009. Sensitivity kernels for seismic Fresnel volume tomography. Geophysics, 74(5): U35-U46.
[16]  Nocedal J. 1980. Updating quasi-Newton matrices with limited storage. Mathematics of Computation, 35(151): 773-782.
[17]  Operto S, Virieux J, Sourbier F. 2007. Documentation of FWT2D program (version 4.8): Frequency-domain full-waveform modeling/inversion of wide-aperture seismic data for imaging 2D acoustic media. Technical report N0007-SEISCOPE project.
[18]  Pica A, Diet J P, Tarantola A. 1990. Nonlinear inversion of seismic reflection data in a laterally invariant medium. Geophysics, 55(3): 284-292.
[19]  Plessix R E. 2006. A review of the adjoint-state method for computing the gradient of a functional with geophysical applications. Geophysical Journal International, 167(2): 495-503.
[20]  Pratt R G, Goulty N R. 1991. Combining wave-equation imaging with travel-time tomography to from high-reso1ution images from cross-hole data. Geophysics, 56(2): 208-224.
[21]  Woodward M J. 1992. Wave-equation tomography. Geophysics, 57(1): 15-26.
[22]  Wu R S, Toksoz M N. 1987. Diffraction tomography and multisource holography applied to seismic imaging. Geophysics, 52(1): 11-25.
[23]  Wu Y S, Cao H, Chen J G, et al. 2006. Crosswell seismic waveform inversion and its application. Progress in Exploration Geophysics (in Chinese), 29(5): 337-340.
[24]  Zhao C J, Liu Y Z, Yang J Z. 2012. Realization of Fresnel volume tomography by Gaussian beam. Oil Geophysical Prospecting (in Chinese), 47(3): 371-378.
[25]  Zhou C X, Gerard T. 1993. Waveform inversion of sub well velocity structure. SEG Expanded Abstracts, 106-109.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133