全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

改进的各向异性标准化方差探测斜磁化磁异常源边界

DOI: 10.6038/cjg20140830, PP. 2724-2731

Keywords: 磁法勘探,各向异性标准化方差,梯度张量,边界探测

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对存在强剩磁作用磁化方向不明的磁异常,本项研究探索直接处理斜磁化磁异常的识别,提出了基于磁力梯度张量模的各向异性边界探测方法.首先利用各向异性尺度改进了各向异性标准差的核函数,突出各向异性高斯函数的作用;结合磁力梯度张量模来消弱斜磁化的影响.数值实验模拟了一组复杂磁异常模型,在斜磁化条件下分析该研究方法的边界探测效果.实验表明:改进方法,即磁力梯度张量模的各向异性标准化方差,它可以探测非垂直磁化磁异常的磁源边界;同时指出,改进方法比基于三维解析信号振幅的各向异性标准化方差对磁化方向的依赖性更小.将该方法应用于中国西部某磁铁矿集区的精细探测,在非垂直磁化条件下对实测磁异常直接进行边界探测,获得了较为理想的处理结果.

References

[1]  Ma G Q, Huang D N, Yu P, et al. 2012. Application of improved balancing filters to edge identification of potential field data. Chinese J. Geophys. (in Chinese), 55(12): 4288-4295.
[2]  Nabighian M N. 1972. The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: its properties and use for automated anomaly interpretation. Geophysics, 37(3): 507-517.
[3]  Oru? B, Sert?elik I, Kafadar ?, et al. 2013. Structural interpretation of the Erzurum Basin, eastern Turkey, using curvature gravity gradient tensor and gravity inversion of basement relief. Journal of Applied Geophysics, 88: 105-113.
[4]  Santos D F, Silva J B C, Barbosa V C F, et al. 2012. Deep-pass-An aeromagnetic data filter to enhance deep features in marginal basins. Geophysics, 73(3): J15-J22.
[5]  Verduzco B, Fairhead J D, Green C M, et al. 2004. New insights into magnetic derivatives for structural mapping. The Leading Edge, 23(2): 116-119.
[6]  Wang Y G, Zhang F X, Liu C, et al. 2013. Edge detection in potential fields using optimal auto-ratio of vertical gradient. Chinese J. Geophys. (in Chinese), 56(7): 2463-2472.
[7]  Zhang H L, Liu T Y, Yang Y S. 2011. Calculation of gravity and magnetic source boundary based on anisotropy normalized variance. Chinese J. Geophys. (in Chinese), 54(7): 1921-1927.
[8]  Zhang H L, Hu X Y, Liu T Y. 2012. Fast inversion of magnetic source boundary and top depth via second order derivative. Chinese J. Geophys. (in Chinese), 55(11): 3839-3847.
[9]  Zhang H L, Ravat D, Hu X Y. 2013. An improved and stable downward continuation of potential field data: The truncated Taylor series iterative downward continuation method. Geophysics, 78(5): J75-J86.
[10]  Zhou W N, Du X J, Li J Y. 2013. A discussion about hyperbolic tilt angle method. Computers & Geosciences, 52: 493-495.
[11]  Beiki M. 2010. Analytic signals of gravity gradient tensor and their application to estimate source location. Geophysics, 75(6): 159-174.
[12]  Beiki M, Pedersen L B. 2010. Eigenvector analysis of gravity gradient tensor to locate geologic bodies. Geophysics, 75(6): I37-I49.
[13]  Beiki M, Pedersen L, Nazi H. 2011. Interpretation of aeromagnetic data using eigenvector analysis of pseudogravity gradient tensor.Geophysics, 76(3): L1-L10.
[14]  Beiki M, Clark D A, Austin J R, et al. 2012. Estimating source location using normalized magnetic source strength calculated from magnetic gradient tensor data. Geophysics, 77(6): J23-J37.
[15]  Clark D A. 2009. Improved methods for interpreting magnetic gradient tensor data. IAGA 11th Scientific Assembly.
[16]  Cooper G R J, Cowan D R. 2011. A generalized derivative operator for potential field data. Geophysical Prospecting, 59(1): 188-194.
[17]  Cooper G R J. 2013. Reply to a discussion about the "Hyperbolic tilt angle method" by Zhou et al. Computers & Geosciences, 52: 496-497.
[18]  Lahti I, Karinen T. 2010. Tilt derivative multiscale edges of magnetic data. The Leading Edge, 29(1): 24-29.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133