全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

TWP-ICE试验期间一次热带深对流过程的拉格朗日输送特征

DOI: 10.6038/cjg20140806, PP. 2442-2454

Keywords: 热带深对流,卷云砧,水凝物输送,拉格朗日轨迹,FLEXPART扩散模式

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文使用高分辨率WRFV3.4.1模式对TWP-ICE试验期间的一次热带深对流过程进行了数值模拟,利用第四重嵌套每五分钟输出一次的模拟资料对对流系统的上升气流质量通量廓线特征进行了分析,并结合FLEXPART拉格朗日粒子扩散模式对热带深对流系统进行拉格朗日轨迹分析.质量通量廓线特征及拉格朗日轨迹的分析结果表明,在条件不稳定层顶附近便有部分水凝物被输送出深对流系统.深对流系统中的水凝物主要沿环境引导气流向深对流下游方向输送.由于受低层风场扰动的影响,少量的水凝物被输送到深对流系统的上游.深对流系统中的水凝物向其下游方向输送的最远距离为200~300km,并约有10%~20%的水凝物对对流系统下游50~150km附近卷云砧的形成产生影响,其影响的时间尺度约为4~6h.

References

[1]  Chen B, Xu X D, Yang S, et al. 2012. On the characteristics of water vapor transport from atmosphere boundary layer to stratosphere over Tibetan Plateau regions in summer. Chinese J. Geophys. (in Chinese), 55(2): 406-513.
[2]  Clothiaux E E, Ackerman T P, Mzce G G, et al. 2000. Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites. J. Appl. Meteor., 39(5): 645-665.
[3]  Davies L, Jakob C, Cheung K, et al. 2013. A single-column model ensemble approach applied to the TWP-ICE experiment. J. Geophys. Res., 118(12): 6544-6563, doi: 10.1002/jgrd.50450.
[4]  Forster C, Stohl A. 2007. Parameterization of convective transport in a Lagrangian particle dispersion model and its evaluation. J. Appl. Meteor. Climatol., 46(4): 403-422.
[5]  Frederick K, Schumacher C. 2008. Anvil Characteristics as Seen by C-POL during the Tropical Warm Pool International Cloud Experiment (TWP-ICE). Mon. Wea. Rev., 136(1): 206-222.
[6]  Fridlind A M, Ackerman A S, Chaboureau J P, et al. 2012. A comparison of TWP-ICE observational data with cloud-resolving model results. J. Geophys. Res., 117(D5): D05204, doi: 10.1029/2011JD016595.
[7]  Gao S T, Yang S, Chen B. 2010. Diagnostic analyses of dry intrusion and nonuniformly saturated instability during a rainfall event. J. Geophys. Res., 115(D2): D02102, doi: 10.1029/2009JD012467.
[8]  Houze R A. 1993. Cloud Dynamics. New York: Academic Press, 573.
[9]  Jin L J, Yin Y, Wang P X, et al. 2007. Numerical modeling of tropical deep convective anvil and sensitivity test on its response to changes in the cloud condensation nuclei concentration. Chinese Journal of Atmospheric Sciences (in Chinese), 31(5): 793-804.
[10]  Li J P, Yin Y, Jin L J, et al. 2009. A numerical study on deep tropical convection using WRF model. Journal of Tropical Meteorology (in Chinese), 25(3): 287-294.
[11]  Li L J, Xie X, Wang B, et al. 2012. Evaluating the Performances of GAMIL1.0 and GAMIL2.0 during TWP-ICE with CAPT. Atmos. Oceanic Sci. Lett., 5(1): 38-42.
[12]  Lin Y L, Donner L J, Petch J, et al. 2012. TWP-ICE global atmospheric model intercomparison: Convection responsiveness and resolution impact. J. Geophys. Res., 117(D9): D09111, doi: 10.1029/2011JD017018.
[13]  Wang W G, Liu X H, Xie S C, et al. 2009. Testing ice microphysics parameterizations in the NCAR community atmospheric model version 3 using tropical warm pool-international cloud experiment data. J. Geophys. Res., 114(D14): D14107, doi: 10.1029/2009J D14107.
[14]  Wang W G, Liu X H. 2009. Evaluating deep updraft formulation in NCAR CAM3 with high-resolution WRF simulations during ARM TWP-ICE. Geophys. Res. Lett., 36(4): L04701, doi: 10.1029/2008GL036692.
[15]  Wang Y, Long C N, Leung L R, et al. 2009. Evaluating regional cloud-permitting simulations of the WRF model for the Tropical Warm Pool International Cloud Experiment (TWP-ICE), Darwin, 2006. J. Geophys. Res., 114(D21): D21203, doi: 10.1029/2009JD012729.
[16]  Wu J B, Del Genio A D, Yao M S, et al. 2009. WRF and GISS SCM simulations of convective updraft properties during TWP-ICE. J. Geophys. Res., 114(D4): D04206, doi: 10.1029/2008JD010851.
[17]  Zhang G J, McFarlane N A. 1995. Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Center general-circulation model. Atmos.-Ocean, 33(3): 407-446.
[18]  Chen B, Xu X D, Bian J C, et al. 2010. Sources, pathways and timescales for the troposphere to stratosphere transport over Asian Monsoon Regions in Boreal Summer. Chinese Journal of Atmospheric Sciences (in Chinese), 34(3): 495-505.
[19]  Luo Z Z, Rossow W B. 2004. Characterizing tropical cirrus life cycle, evolution, and interaction with upper-tropospheric water vapor using Lagrangian trajectory analysis of satellite observations. J. Climate, 17(23): 4541-4563.
[20]  Massie S, Gettelman A, Randel W, et al. 2002. Distribution of tropical cirrus in relation to convection. J. Geophys. Res., 107(D21): AAC19-1-AAC19-16, doi: 10.1029/2001JD001293.
[21]  May P T, Mather J H, Vaughan G, et al. 2008. The tropical warm pool international cloud experiment. Bull. Amer. Meteor. Soc., 89(5): 629-645.
[22]  Mrowiec A A, Rio C, Fridlind A M, et al. 2012. Analysis of cloud-resolving simulations of a tropical mesoscale convective system observed during TWP-ICE: Vertical fluxes and draft properties in convective and stratiform regions. J. Geophys. Res., 117(D19): D19201, doi: 10.1029/2012JD017759.
[23]  Rickenbach T, Kucera P, Gentry M, et al. 2008. The relationship between anvil clouds and convective cells: A case study in south Florida during crystal-face. Mon. Wea. Rev., 136(10): 3917-3932.
[24]  Sheng P X, Mao J T, Li J G, et al. 2003. Atmospheric Physics (in Chinese). Beijing: Peking University Press, 310-352.
[25]  Stohl A, Forster C, Frank A, et al. 2005. Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys., 5(9): 2461-2474.
[26]  Varble A, Fridlind A M, Zipser E J, et al. 2011. Evaluation of cloud-resolving model intercomparison simulations using TWP-ICE observations: Precipitation and cloud structure. J. Geophys. Res., 116(D12): D12206, doi: 10.1029/2010JD015180.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133