全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

三维层状孔隙介质中弹性波的一种积分表达式I:理论

DOI: 10.6038/cjg20140620, PP. 1891-1899

Keywords: 层状孔隙介质,弹性波,半解析解,广义反透射方法

Full-Text   Cite this paper   Add to My Lib

Abstract:

孔隙介质弹性波传播理论在地球物理勘探、地震工程和岩土动力学等领域有着广泛的应用.而孔隙介质中的弹性波受孔隙度、渗透率、流体黏滞系数等参数的影响,因此研究波场的传播特征将有助于分析和提取这些信息.本文在Biot理论的基础上,针对三维层状孔隙介质模型,利用在合成理论地震图的研究中已经被证实具有稳定、高效且适用范围较广的Luco-Apsel-Chen(LAC)广义反透射方法,给出了弹性波场的一种积分形式的半解析解,可通过数值方法高效、准确地计算层状孔隙介质中的理论波场,所以该积分形式的半解析解可为三维层状孔隙介质波场传播特征的理论数值模拟研究提供一种新的途径和手段.

References

[1]  AI Rjoub Y S. 2013. The reflection of P-waves in a poroelastic half-space saturated with viscous fluid. Soil Dyn. Earthq. Eng., 49: 218-230.
[2]  Aki K, Richards P G. 1980. Quantitative Seismology: Theory and Methods. San Francisco CA: W. H. Freeman.
[3]  Biot M A. 1956a. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J. Acoust. Soc. Am., 28(2): 168-178.
[4]  Biot M A. 1956b. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am., 28(2): 179-191.
[5]  Biot M A. 1962. Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys., 33(4): 1482-1498.
[6]  Burridge R, Keller J B. 1981. Poroelasticity equations derived from microstructure. J. Acoust. Soc. Am., 70(4): 1140-1146.
[7]  Carcione J M, Helle H B. 1999. Numerical solution of the poroviscoelastic wave equation on a staggered mesh. J. Comput. Phys., 154(2): 520-527.
[8]  Chen X F. 2007. Generation and propagation of seismic SH waves in multi-layered media with irregular interfaces. Advances in Geophysics, 48: 191-264.
[9]  Chen X F. 1993. A systematic and efficient method for computing seismic normal modes for multilayered half-space. Geophys. J. Int., 115(2): 391-409.
[10]  de Boer R, Ehlers R, Liu Z F. 1993. One-dimensional transient wave propagation in fluid-saturated incompressible porous media. Arch. Appl. Mech., 63(1): 59-72.
[11]  Ding B Y, Fan L B, Wu J H. 1999. The Green function and wave field on two-phase saturated medium by concentrated force. Chinese J. Geophys. (in Chinese), 42(6): 800-808.
[12]  Ding B Y, Song X C, Yuan J H. 2009. The solution of Green function of fluid phase in two-phase saturated medium. Chinese J. Geophys. (in Chinese), 52(7): 1858-1866.
[13]  Dvorkin J, Nur A. 1993. Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms. Geophysics, 58(4): 524-533.
[14]  Ge Z X, Chen X F. 2008. An efficient approach for simulating wave propagation with the boundary element method in multilayered media with irregular interfaces. Bull. Seism. Soc. Am., 98(6): 3007-3016.
[15]  Guan W, Hu H, He X. 2009. Finite-difference modeling of the monopole acoustic logs in a horizontally stratified porous formation. J. Acoust. Soc. Am., 125: 1942-1950.
[16]  Gupta S, Vishwakarma S K, Majhi D K, et al. 2013. Possibility of Love wave propagation in a porous layer under the effect of linearly varying directional rigidities. Appl. Math. Model., 37(10-11): 6652-6660.
[17]  Johnston D L, Koplik J, Dashen R. 1987. Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid Mech., 176: 379-402.
[18]  Pride S R, Berryman J G. 1998. Connecting theory to experiment in poroelasticity. J. Mech. Phys. Solids, 46(4): 719-747.
[19]  Ren H X, Huang Q H, Chen X F. 2010. A new numerical technique for simulating the coupled seismic and electromagnetic waves in layered porous media. Earthq. Sci., 23(2): 167-176.
[20]  Ren H X, Chen X F, Huang Q H. 2012. Numerical simulation of coseismic electromagnetic fields associated with seismic waves due to finite faulting in porous media. Geophys. J. Int., 188(3): 925-944.
[21]  Rumpler R, Deu J F, Goransson P. 2012. A modal-based reduction method for sound absorbing porous materials in poro-acoustic finite element models. J. Acoust. Soc. Am., 132(5): 3162-3179.
[22]  Shen Y Q, Yang D H. 2004. The Green function of two-phase media BISQ model. Chinese J. Geophys. (in Chinese), 47(1): 101-105.
[23]  Tang X M, Chen X L, Xu X K. 2012. A cracked porous medium elastic wave theory and its application to interpreting acoustic data from tight formations. Geophysics, 77(6): D245-D252.
[24]  Tang X M. 2011. A unified theory for elastic wave propagation through porous media containing cracks-An extension of Biot''s poroelastic wave theory. Sci. China Earth Sci., 41(6): 784-795.
[25]  Zhang J F. 1999. Quadrangle-grid velocity-stress finite difference method for poroelastic wave equations. Geophys. J. Int., 139(1): 171-182.
[26]  Zhang X W, Wang D L, Wang Z J, et al. 2010. The study on azimuth characteristics of attenuation and dispersion in 3D two-phase orthotropic crack medium based on BISQ mechanism. Chinese J. Geophys. (in Chinese), 53(10): 2452-2459.
[27]  Dominguez J. 1991. An integral formulation for dynamic poroelasticity. J. App1. Mech. ASME, 58(2): 588-590.
[28]  Kang Y J, Bolton J S. 1995. Finite element modeling of isotropic elastic porous materials coupled with acoustical finite elements. J. Acoust. Soc. Am., 98: 635-643.
[29]  Kennett B L N. 1983. Seismic Wave Propagation in Stratified Media. Cambridge UK: Cambridge Univ. Press.
[30]  Levy T. 1979. Propagation of waves in a fluid-saturated porous elastic solid. Int. J. Eng. Sci., 17(9): 1005-1014.
[31]  Luco J E, Apsel R J. 1983. On the Green''s function for a layered half-space: Part I. Bull. Seism. Soc. Am., 73(4): 909-929.
[32]  Martin B E, Thomson C J. 1997. Modelling surface waves in anisotropic structures II: Examples. Physics of the Earth and Planetary Interiors, 103(3-4): 253-279.
[33]  Masson Y J, Pride S R, Nihei K T. 2006. Finite difference modeling of Biot''s poroelastic equations at seismic frequencies. J. Geophys. Res.: Solid Earth, 111(B10),doi: 10.1029/2006JB004366.
[34]  Panneton R, Atalla N. 1997. An efficient finite element scheme for solving the three-dimensional poroelasticity problem in acoustics. J. Acoust. Soc. Am., 101: 3287-3298.
[35]  Plona T J. 1980. Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies. Appl. Phys. Lett., 36(4): 259-261.
[36]  Pride S R, Gangi A F, Morgan F D. 1992. Deriving the equations of motion for isotropic media. J. Acoust. Soc. Am., 92: 3278-3290.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133