[1] | AI Rjoub Y S. 2013. The reflection of P-waves in a poroelastic half-space saturated with viscous fluid. Soil Dyn. Earthq. Eng., 49: 218-230.
|
[2] | Aki K, Richards P G. 1980. Quantitative Seismology: Theory and Methods. San Francisco CA: W. H. Freeman.
|
[3] | Biot M A. 1956a. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J. Acoust. Soc. Am., 28(2): 168-178.
|
[4] | Biot M A. 1956b. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am., 28(2): 179-191.
|
[5] | Biot M A. 1962. Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys., 33(4): 1482-1498.
|
[6] | Burridge R, Keller J B. 1981. Poroelasticity equations derived from microstructure. J. Acoust. Soc. Am., 70(4): 1140-1146.
|
[7] | Carcione J M, Helle H B. 1999. Numerical solution of the poroviscoelastic wave equation on a staggered mesh. J. Comput. Phys., 154(2): 520-527.
|
[8] | Chen X F. 2007. Generation and propagation of seismic SH waves in multi-layered media with irregular interfaces. Advances in Geophysics, 48: 191-264.
|
[9] | Chen X F. 1993. A systematic and efficient method for computing seismic normal modes for multilayered half-space. Geophys. J. Int., 115(2): 391-409.
|
[10] | de Boer R, Ehlers R, Liu Z F. 1993. One-dimensional transient wave propagation in fluid-saturated incompressible porous media. Arch. Appl. Mech., 63(1): 59-72.
|
[11] | Ding B Y, Fan L B, Wu J H. 1999. The Green function and wave field on two-phase saturated medium by concentrated force. Chinese J. Geophys. (in Chinese), 42(6): 800-808.
|
[12] | Ding B Y, Song X C, Yuan J H. 2009. The solution of Green function of fluid phase in two-phase saturated medium. Chinese J. Geophys. (in Chinese), 52(7): 1858-1866.
|
[13] | Dvorkin J, Nur A. 1993. Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms. Geophysics, 58(4): 524-533.
|
[14] | Ge Z X, Chen X F. 2008. An efficient approach for simulating wave propagation with the boundary element method in multilayered media with irregular interfaces. Bull. Seism. Soc. Am., 98(6): 3007-3016.
|
[15] | Guan W, Hu H, He X. 2009. Finite-difference modeling of the monopole acoustic logs in a horizontally stratified porous formation. J. Acoust. Soc. Am., 125: 1942-1950.
|
[16] | Gupta S, Vishwakarma S K, Majhi D K, et al. 2013. Possibility of Love wave propagation in a porous layer under the effect of linearly varying directional rigidities. Appl. Math. Model., 37(10-11): 6652-6660.
|
[17] | Johnston D L, Koplik J, Dashen R. 1987. Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid Mech., 176: 379-402.
|
[18] | Pride S R, Berryman J G. 1998. Connecting theory to experiment in poroelasticity. J. Mech. Phys. Solids, 46(4): 719-747.
|
[19] | Ren H X, Huang Q H, Chen X F. 2010. A new numerical technique for simulating the coupled seismic and electromagnetic waves in layered porous media. Earthq. Sci., 23(2): 167-176.
|
[20] | Ren H X, Chen X F, Huang Q H. 2012. Numerical simulation of coseismic electromagnetic fields associated with seismic waves due to finite faulting in porous media. Geophys. J. Int., 188(3): 925-944.
|
[21] | Rumpler R, Deu J F, Goransson P. 2012. A modal-based reduction method for sound absorbing porous materials in poro-acoustic finite element models. J. Acoust. Soc. Am., 132(5): 3162-3179.
|
[22] | Shen Y Q, Yang D H. 2004. The Green function of two-phase media BISQ model. Chinese J. Geophys. (in Chinese), 47(1): 101-105.
|
[23] | Tang X M, Chen X L, Xu X K. 2012. A cracked porous medium elastic wave theory and its application to interpreting acoustic data from tight formations. Geophysics, 77(6): D245-D252.
|
[24] | Tang X M. 2011. A unified theory for elastic wave propagation through porous media containing cracks-An extension of Biot''s poroelastic wave theory. Sci. China Earth Sci., 41(6): 784-795.
|
[25] | Zhang J F. 1999. Quadrangle-grid velocity-stress finite difference method for poroelastic wave equations. Geophys. J. Int., 139(1): 171-182.
|
[26] | Zhang X W, Wang D L, Wang Z J, et al. 2010. The study on azimuth characteristics of attenuation and dispersion in 3D two-phase orthotropic crack medium based on BISQ mechanism. Chinese J. Geophys. (in Chinese), 53(10): 2452-2459.
|
[27] | Dominguez J. 1991. An integral formulation for dynamic poroelasticity. J. App1. Mech. ASME, 58(2): 588-590.
|
[28] | Kang Y J, Bolton J S. 1995. Finite element modeling of isotropic elastic porous materials coupled with acoustical finite elements. J. Acoust. Soc. Am., 98: 635-643.
|
[29] | Kennett B L N. 1983. Seismic Wave Propagation in Stratified Media. Cambridge UK: Cambridge Univ. Press.
|
[30] | Levy T. 1979. Propagation of waves in a fluid-saturated porous elastic solid. Int. J. Eng. Sci., 17(9): 1005-1014.
|
[31] | Luco J E, Apsel R J. 1983. On the Green''s function for a layered half-space: Part I. Bull. Seism. Soc. Am., 73(4): 909-929.
|
[32] | Martin B E, Thomson C J. 1997. Modelling surface waves in anisotropic structures II: Examples. Physics of the Earth and Planetary Interiors, 103(3-4): 253-279.
|
[33] | Masson Y J, Pride S R, Nihei K T. 2006. Finite difference modeling of Biot''s poroelastic equations at seismic frequencies. J. Geophys. Res.: Solid Earth, 111(B10),doi: 10.1029/2006JB004366.
|
[34] | Panneton R, Atalla N. 1997. An efficient finite element scheme for solving the three-dimensional poroelasticity problem in acoustics. J. Acoust. Soc. Am., 101: 3287-3298.
|
[35] | Plona T J. 1980. Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies. Appl. Phys. Lett., 36(4): 259-261.
|
[36] | Pride S R, Gangi A F, Morgan F D. 1992. Deriving the equations of motion for isotropic media. J. Acoust. Soc. Am., 92: 3278-3290.
|