全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

利用全极化微波辐射计资料反演台风境内海面风场

DOI: 10.6038/cjg20140305, PP. 738-751

Keywords: 全极化微波辐射计,台风,海面风场

Full-Text   Cite this paper   Add to My Lib

Abstract:

作为一种新兴的被动遥感技术,全极化微波辐射计不仅可以提供海面风速产品,还可以提供海面风向产品.以往利用全极化微波辐射计观测亮温进行海面风场反演仅在晴空条件下进行,本文通过对观测亮温结合台风区域海面风场的分布特征进行分析,验证了全极化微波辐射计具有在台风等恶劣天气条件下进行海面风场观测的能力.基于敏感性分析实验,确定使用6.8GHz和10.7GHz等低频通道组合可进行台风区域内海面风场反演.其中,海面风速反演使用基于统计的多元线性回归算法,同时对海面温度、大气水汽含量、云中液态水含量及降水强度等物理量进行反演计算,为海面风向反演做准备.海面风向反演使用物理统计法进行,借鉴散射计风向反演使用的最大似然估计法.通过在全极化辐射传输前向模型中加入降水对大气透过率的影响、设计第三和第四Stokes通道亮温环境影响修正函数,在实现台风区域内海面风向反演的同时减小了反演误差.通过对“云娜”台风境内海面风场进行数值计算,验证了本文反演算法的可行性,并对反演误差的空间分布特征进行了分析.将2004年各台风过程的海面风场反演结果与散射计风场产品进行对比,海面风速和海面风向反演的均方根误差分别为1.64m·s-1和18.02°.

References

[1]  Wentz F J. 1983. A model function for ocean microwave brightness temperatures. Journal of Geophysical Research: Oceans (1978—2012),88(C3): 1892-1908, doi: 10.1029/JC088iC03p01892.
[2]  Wentz F J. 1992. Measurement of oceanic wind vector using satellite microwave radiometers. IEEE Transactions on Geoscience and Remote Sensing, 30(5): 960-972, doi: 10.1109/36.175331.
[3]  Xie X T, Fang Y, Chen X X, et al. 2005. Research on numerical wind vector retrieval algorithm based on maximum likelihood estimation. Geography and Geo-Information Science (in Chinese), 21(1): 30-33, doi: 10.3969/j.issn.1672-0504.2005.01.009.
[4]  Yan W, Wang R. 2007. Wind vector sensitivity analysis for Polarimetric microwave radiometer (in Chinese). // Jiangsu and Anhui Provinces Academic Seminar in Atmospheric Sounding, Remote Sensing and Electronic Technology. Anqing, 157-161.
[5]  Bettenhausen M H, Smith C K, Bevilacqua R M, et al. 2006. A nonlinear optimization algorithm for WindSat wind vector retrievals. IEEE Transactions on Geoscience and Remote Sensing, 44(3): 597-610, doi: 10.1109/TGRS.2005.862504.
[6]  Gaiser P W, Twarog E M, Li L, et al. 2004. The WindSat space borne polarimetric microwave radiometer: sensor description and mission overview. // Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium (IGARSS''04, Vol.1). Anchorage, AK: IEEE, doi: 10.1109/IGARSS.2004.1369039.
[7]  Goodberlet M A, Swift C T, Wilkerson J C. 1990. Ocean surface wind speed measurements of the Special Sensor Microwave/Imager (SSM/I). IEEE Transactions on Geoscience and Remote Sensing, 28(5): 823-828, doi: 10.1109/36.58969.
[8]  JPL. 2006. WindSat Data Products Users'' Manual. Version3.
[9]  Liu J Y, Wang Z Z, Yin X B, et al. 2007. An ocean wind retrieval algorithm for WindSat microwave Polarimetric radiometer. Remote Sensing Technology and Application (in Chinese), 22(2): 210-215.
[10]  Meissner T, Wentz F. 2005. Ocean retrievals for WindSat: Radiative transfer model, algorithm, validation. // Proceedings of MTS/IEEE (OCEANS 2005). Washington, DC: IEEE, 130-133, doi: 10.1109/OCEANS.2005.1639750.
[11]  Meissner T, Wentz F J. 2009. Wind-vector retrievals under rain with passive satellite microwave radiometers. IEEE Transactions on Geoscience and Remote Sensing, 47(9): 3065-3083, doi: 10.1109/TGRS.2009.2027012.
[12]  Steven S P, Rose L A, Gaiser P W, et al. 2004. Recent measurements of the microwave emissivity of foam: Effects on WindSat brightness temperatures. WindSat Cal/Val and Science Meeting, Solomons, MD.
[13]  Wang N Y, Chang P S, Bettenhausen M, et al. 2005. WindSat physically based forward model: atmospheric component. // Proc. SPIE 5656, Active and Passive Remote Sensing of the Oceans, 104, doi: 10.1117/12.578811.
[14]  Wentz F J. 1999. AMSR Ocean Algorithm, Remote Sensing System. RSS Tech. Report 110398. Version 2.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133