Chen K H. 1984. Propagating numerical model of elastic wave in anisotropic in homogeneous media-finite element method. The 54th SEG Annual meeting Expanded Abstracts, 631-632.
[2]
Cohen G C. 2002. Higher-order Numerical Methods for Transient Wave Equations. Springer.
[3]
Cockburn B, Shu C W. 1989. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework. Mathematics of Computation, 52(186): 411-435.
[4]
Cockburn B, Shu C W. 1998. The Runge-Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems. Journal of Computational Physics, 141(2): 199-224, doi: 10.1006/jcph.1998.5892.
[5]
Cockburn B, Shu C W. 2001. Runge-Kutta discontinuous Galerkin methods for Convection-Dominated problems. Journal of Scientific Computing, 16(3): 173-261, doi: 10.1023/ A:1012873910884.
[6]
Dablain M A. 1986. The application of high-order differencing to scalar wave equation. Geophysics, 51(1): 54-66, doi: 10.1190/1.1442040.
[7]
De Basabe J D, Sen M K. 2007. Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equations. Geophysics, 72(6): T81-T95, doi: 10.1190/1.2785046.
[8]
De Basabe J D, Sen M K, Wheeler M F. 2008. The interior penalty discontinuous Galerkin method for elastic wave propagation: Grid dispersion. Geophysical Journal International, 175(1): 83-93, doi: 10.1111/j.1365-246X.2008.03915.x.
[9]
Dong L G, Ma Z T, Cao J Z, et al. 2000. A staggered-grid high-order difference method of one-order elastic wave equation. Chinese J. Geophys. (in Chinese), 43(3): 411-419.
[10]
Dumbser M, Kser M. 2006. An arbitrary high order discontinuous Galerkin method for elastic waves on unstructured meshes—II: The three-dimensional case. Geophysical Journal International, 167(1): 319-336, doi: 10.1111/j.1365-246X.2006.03120.x.
[11]
Fei T, Larner K. 1995. Elimination of numerical dispersion in finite difference modeling and migration by flux-corrected transport. Geophysics, 60: 1830-1842, doi: 10.1190/1.1443915.
[12]
Hesthaven J S, Warburton T. 2008. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer.
[13]
Hu F Q, Hussaini M Y, Rasitarinera P. 1999. An analysis of the discontinuous Galerkin method for wave propagation problems. Journal of Computational Physics, 151(2): 921-946, doi: 10.1006/jcph.1999.6227.
[14]
Kser M, Dumbser M. 2006. An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes—I: The two-dimensional isotropic case with external source terms. Geophysical Journal International, 166(2): 855-877, doi: 10.1111/j.1365-246X.2006.03051.x.
[15]
Kelly K R, Wave R W, Treitel S, et al. 1976. Synthetic seismograms: a finite-difference approach. Geophysics, 41(1): 2-27, doi: 10.1190/1.1440605.
[16]
Komatitsch D, Vilotte J P. 1998. The spectral element method: an efficient tool to simulate the seismic responses of 2D and 3D geological structures. Bulletin of the Seismological Society of America, 88(2): 368-392.
[17]
Kondoh Y, Hosaka Y, Ishii K. 1994. Kernel optimum nearly-analytical discretization algorithm applied to parabolic and hyperbolic equations. Computers & Mathematics with Applications, 27(3): 59-90, doi: 10.1016/0898-1221(94)90047-7.
[18]
Ma X, Yang D H, Liu F Q. 2011. A nearly analytic symplectically partitioned Runge-Kutta method for 2-D seismic wave equations. Geophysical Journal International, 187(1): 480-496, doi: 10.1111/j.1365-246X.2011.05158.x.
[19]
Ma X, Yang D H, Zhang J H. 2010. Symplectic partitioned Runge-Kutta method for solving the acoustic wave equation. Chinese J. Geophys. (in Chinese), 53(8): 1993-2003, doi: 10.3969/j.issn.0001-5733.2010.08.026.
[20]
Moczo P, Kristek J, Halada L. 2000. 3D 4th-order staggered-grid finite-difference schemes: stability and grid dispersion. Bulletin of the Seismological Society of America, 2000, 90(3): 587-603, doi: 10.1785/0119990119.
[21]
Reed W H, Hill T R. 1973. Triangular mesh methods for the neutron transport equation. Los Alamos Scientific Laboratory Report. LA-UR-73-479.
[22]
Versteeg R J, Grau G. 1991. The Marmousi Experience. Proc. EAGE Workshop on Practical Aspects of Seismic Data Inversion, Eur. Assoc. Explor. Geophysicists, Zeist.
[23]
Virieux J. 1986. P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics, 51(4): 889-901, doi: 10.1190/1.1442147.
[24]
Wang L, Yang D H, Deng X Y. 2009. A WNAD method for seismic stress-field modeling in heterogeneous media. Chinese J. Geophys. (in Chinese), 52(6): 1526-1535, doi: 10.3969/j.issn.0001-5733.2009.06.014.
[25]
Yang D H, Peng J M, Lu M, et al. 2006. Optimal nearly-analytic discrete approximation to the scalar wave equation. Bulletin of the Seismological Society of America, 96(3): 1114-1130, doi: 10.1785/0120050080.
[26]
Yang D H, Song G J, Chen S, et al. 2007. An improved nearly analytical discrete method: an efficient tool to simulate the seismic response of 2-D porous structures. Journal of Geophysics and Engineering, 4(1): 40-52, doi: 10.1088/1742-2132/4/1/006.
[27]
Yang D H, Song G J, Hua B L, et al. 2010. Simulation of acoustic wavefields in heterogeneous media: A robust method for automatic suppression of numerical dispersion. Geophysics, 75(3): T99-T110, doi: 10.1190/1.3428483.
[28]
Yang D H, Teng J W, Zhang Z J, et al. 2003. A nearly-analytic discrete method for acoustic and elastic wave equations in anisotropic media. Bulletin of the Seismological Society of America, 93(2): 882-890, doi: 10.1785/0120020125.
[29]
Zheng H S, Zhang Z J, Liu E. 2006. Non-linear seismic wave propagation in anisotropic media using flux-corrected transport technique. Geophysical Journal International, 165(3): 943-956, doi: 10.1111/j.1365-246X.2006.02966.x.
[30]
Ainsworth M, Monk P, Muniz W. 2006. Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation. Journal of Scientific Computing, 27(1-3): 5-40, doi: 10.1007/s10915-005-9044-x.
[31]
Arnold D N, Brezzi F, Cockburn B, et al. 2002. Unified analysis of Discontinuous Galerkin Methods for elliptic problems. SIAM Journal on Numerical Analysis, 39(5): 1749-1779, doi: 10.1137/S0036142901384162.
[32]
Virieux J. 1984. SH-wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics, 49(11): 1933-1957, doi: 10.1190/1.1441605.