全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

间断有限元方法的数值频散分析及其波场模拟

DOI: 10.6038/cjg20140320, PP. 906-917

Keywords: Runge-Kutta间断有限元方法,数值频散,波场模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

数值求解波动方程是大尺度正演波场模拟、基于波动方程的地震偏移和反演成像的关键.本文针对求解二维声波方程的Runge-Kutta间断有限元(RKDG)方法的数值频散问题,从理论推导和数值分析的角度进行了深入研究,并将其与近似解析离散化方法(OptimalNearlyAnalyticDiscreteMethod,简称ONAD方法)、Lax-Wendroff修正方法、交错网格(Staggered-Grid,简称SG)方法的数值频散进行了比较研究.结果表明:RKDG方法以及近似解析离散化方法在压制数值频散方面要好于上述其他方法,特别是空间精度为3阶的RKDG方法,即使当空间步长取波长的一半,即一个波长内取2个网格点时,最大的频散误差也不超过1.67%.同时,我们也通过波场模拟对比研究了不同数值方法的数值频散问题,进一步直观地验证了数值频散的理论分析结果.

References

[1]  Chen K H. 1984. Propagating numerical model of elastic wave in anisotropic in homogeneous media-finite element method. The 54th SEG Annual meeting Expanded Abstracts, 631-632.
[2]  Cohen G C. 2002. Higher-order Numerical Methods for Transient Wave Equations. Springer.
[3]  Cockburn B, Shu C W. 1989. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework. Mathematics of Computation, 52(186): 411-435.
[4]  Cockburn B, Shu C W. 1998. The Runge-Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems. Journal of Computational Physics, 141(2): 199-224, doi: 10.1006/jcph.1998.5892.
[5]  Cockburn B, Shu C W. 2001. Runge-Kutta discontinuous Galerkin methods for Convection-Dominated problems. Journal of Scientific Computing, 16(3): 173-261, doi: 10.1023/ A:1012873910884.
[6]  Dablain M A. 1986. The application of high-order differencing to scalar wave equation. Geophysics, 51(1): 54-66, doi: 10.1190/1.1442040.
[7]  De Basabe J D, Sen M K. 2007. Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equations. Geophysics, 72(6): T81-T95, doi: 10.1190/1.2785046.
[8]  De Basabe J D, Sen M K, Wheeler M F. 2008. The interior penalty discontinuous Galerkin method for elastic wave propagation: Grid dispersion. Geophysical Journal International, 175(1): 83-93, doi: 10.1111/j.1365-246X.2008.03915.x.
[9]  Dong L G, Ma Z T, Cao J Z, et al. 2000. A staggered-grid high-order difference method of one-order elastic wave equation. Chinese J. Geophys. (in Chinese), 43(3): 411-419.
[10]  Dumbser M, Kser M. 2006. An arbitrary high order discontinuous Galerkin method for elastic waves on unstructured meshes—II: The three-dimensional case. Geophysical Journal International, 167(1): 319-336, doi: 10.1111/j.1365-246X.2006.03120.x.
[11]  Fei T, Larner K. 1995. Elimination of numerical dispersion in finite difference modeling and migration by flux-corrected transport. Geophysics, 60: 1830-1842, doi: 10.1190/1.1443915.
[12]  Hesthaven J S, Warburton T. 2008. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer.
[13]  Hu F Q, Hussaini M Y, Rasitarinera P. 1999. An analysis of the discontinuous Galerkin method for wave propagation problems. Journal of Computational Physics, 151(2): 921-946, doi: 10.1006/jcph.1999.6227.
[14]  Kser M, Dumbser M. 2006. An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes—I: The two-dimensional isotropic case with external source terms. Geophysical Journal International, 166(2): 855-877, doi: 10.1111/j.1365-246X.2006.03051.x.
[15]  Kelly K R, Wave R W, Treitel S, et al. 1976. Synthetic seismograms: a finite-difference approach. Geophysics, 41(1): 2-27, doi: 10.1190/1.1440605.
[16]  Komatitsch D, Vilotte J P. 1998. The spectral element method: an efficient tool to simulate the seismic responses of 2D and 3D geological structures. Bulletin of the Seismological Society of America, 88(2): 368-392.
[17]  Kondoh Y, Hosaka Y, Ishii K. 1994. Kernel optimum nearly-analytical discretization algorithm applied to parabolic and hyperbolic equations. Computers & Mathematics with Applications, 27(3): 59-90, doi: 10.1016/0898-1221(94)90047-7.
[18]  Ma X, Yang D H, Liu F Q. 2011. A nearly analytic symplectically partitioned Runge-Kutta method for 2-D seismic wave equations. Geophysical Journal International, 187(1): 480-496, doi: 10.1111/j.1365-246X.2011.05158.x.
[19]  Ma X, Yang D H, Zhang J H. 2010. Symplectic partitioned Runge-Kutta method for solving the acoustic wave equation. Chinese J. Geophys. (in Chinese), 53(8): 1993-2003, doi: 10.3969/j.issn.0001-5733.2010.08.026.
[20]  Moczo P, Kristek J, Halada L. 2000. 3D 4th-order staggered-grid finite-difference schemes: stability and grid dispersion. Bulletin of the Seismological Society of America, 2000, 90(3): 587-603, doi: 10.1785/0119990119.
[21]  Reed W H, Hill T R. 1973. Triangular mesh methods for the neutron transport equation. Los Alamos Scientific Laboratory Report. LA-UR-73-479.
[22]  Versteeg R J, Grau G. 1991. The Marmousi Experience. Proc. EAGE Workshop on Practical Aspects of Seismic Data Inversion, Eur. Assoc. Explor. Geophysicists, Zeist.
[23]  Virieux J. 1986. P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics, 51(4): 889-901, doi: 10.1190/1.1442147.
[24]  Wang L, Yang D H, Deng X Y. 2009. A WNAD method for seismic stress-field modeling in heterogeneous media. Chinese J. Geophys. (in Chinese), 52(6): 1526-1535, doi: 10.3969/j.issn.0001-5733.2009.06.014.
[25]  Yang D H, Peng J M, Lu M, et al. 2006. Optimal nearly-analytic discrete approximation to the scalar wave equation. Bulletin of the Seismological Society of America, 96(3): 1114-1130, doi: 10.1785/0120050080.
[26]  Yang D H, Song G J, Chen S, et al. 2007. An improved nearly analytical discrete method: an efficient tool to simulate the seismic response of 2-D porous structures. Journal of Geophysics and Engineering, 4(1): 40-52, doi: 10.1088/1742-2132/4/1/006.
[27]  Yang D H, Song G J, Hua B L, et al. 2010. Simulation of acoustic wavefields in heterogeneous media: A robust method for automatic suppression of numerical dispersion. Geophysics, 75(3): T99-T110, doi: 10.1190/1.3428483.
[28]  Yang D H, Teng J W, Zhang Z J, et al. 2003. A nearly-analytic discrete method for acoustic and elastic wave equations in anisotropic media. Bulletin of the Seismological Society of America, 93(2): 882-890, doi: 10.1785/0120020125.
[29]  Zheng H S, Zhang Z J, Liu E. 2006. Non-linear seismic wave propagation in anisotropic media using flux-corrected transport technique. Geophysical Journal International, 165(3): 943-956, doi: 10.1111/j.1365-246X.2006.02966.x.
[30]  Ainsworth M, Monk P, Muniz W. 2006. Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation. Journal of Scientific Computing, 27(1-3): 5-40, doi: 10.1007/s10915-005-9044-x.
[31]  Arnold D N, Brezzi F, Cockburn B, et al. 2002. Unified analysis of Discontinuous Galerkin Methods for elliptic problems. SIAM Journal on Numerical Analysis, 39(5): 1749-1779, doi: 10.1137/S0036142901384162.
[32]  Virieux J. 1984. SH-wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics, 49(11): 1933-1957, doi: 10.1190/1.1441605.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133