Bécache E, Fauqueux S, Joly P. 2003. Stability of perfectly matched layers, group velocities and anisotropic waves. J. Comput. Phys., 188(2): 399-433, doi: 10.1016/S0021-9991(03)00184-0.
[2]
Bérenger J P. 1994. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys., 114(2):185-200, doi: 10.1006/jcph.1994.1159.
[3]
Cerjan C, Kosloff D, Kosloff R, et al. 1985. A nonreflecting boundary condition for discrete acoustic and elastic wave equations. Geophysics, 50(4): 705-708, doi: 10.1190/1.1441945.
[4]
Chen Y H, Chew W C, Oristaglio M L. 1997. Application of perfectly matched layers to the transient modeling of subsurface EM problems. Geophysics, 62(6):1730-1736, doi: 10.1190/1.1444273.
[5]
Kosloff R, Kosloff D. 1986. Absorbing boundaries for wave propagation problems. J. Comput. Phys., 63(2): 363-376, doi: 10.1016/0021-9991(86)90199-3.
[6]
Li Z C, Li N, Huang J P, et al. 2013. The Quantity study of the factors that influence the Shear-wave splitting time in Fracture Media. Progress in Geophysics (in Chinese), 28(1): 240-249, doi: 10.6038/pg20130125.
[7]
Lisitsa V, Vishnevskiy D. 2010. Lebedev scheme for the numerical simulation of wave propagation in 3D anisotropic elasticity. Geophysical Prospecting, 58(4): 619-635, doi: 10.1111/j.1365-2478.2009.00862.x.
[8]
Lisitsa V, Tcheverda V. 2012. Numerical simulation of seismic waves in models with anisotropic formations: coupling Virieux and Lebedev finite-difference schemes. Comput. Geosci., 16(4):1135-1152, doi: 10.1007/s10596-012-9308-0.
[9]
McGarry R, Pasalic D, Ong C. 2011. Anisotropic elastic modeling on a Lebedev grid: Dispersion reduction and grid decoupling. 81th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts, 2829-2833.
[10]
Meza-Fajardo K C, Papageorgiou A S. 2008. A non-convolutional split-field, perfectly matched layer for wave propagation in isotropic and anisotropic elastic media: stability analysis. Bulletin of the Seismological Society of America, 98(4): 1811-1836, doi: 10.1785/0120070223.
[11]
Saenger E H, Gold N, Shapiro S A. 2000. Modeling the propagation of elastic waves using a modified finite-difference grid. Wave Motion, 31(1): 77-92, doi: 10.1016/S0165-2125(99)00023-2.
[12]
Tam C K W, Webb J C. 1993. Dispersion-relation-preserving finite difference schemes for computational acoustics. J. Comput. Phys., 107(2): 262-281, doi: 10.1006/jcph.1993.1142.
[13]
Teng J W, Zhang Z J, Wang G J, et al. 2000. The seismic anisotropy and geodynamics of earth''s interior media. Progress in Geophysics (in Chinese), 15(1): 1-35.
[14]
Virieux J. 1986. P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method. Geophysics, 51(4): 889-901, doi: 10.1190/1.1442147.
[15]
Chew W C, Weedon W H. 1994. A 3-D perfectly matched medium from modified Maxwell''s equations with stretched coordinates. Microwave and Optical Technology Letters, 7(13): 599-604, doi: 10.1002/mop.4650071304.
[16]
Clayton R, Engquist B. 1980. Absorbing boundary conditions for wave-equation migration. Geophysics, 45(5): 895-904, doi: 10.1190/1.1441094.
[17]
Hao C T, Yao C, Wang X. 2006. The characteristics of velocities with azimuth variation for arbitrary spatial orientation TI media. Progress in Geophysics (in Chinese), 21(2): 524-530, doi: 10.3969/j.issn.1004-2903.2006.02.029.
[18]
Igel H, Mora P, Riollet B. 1995. Anisotropic wave propagation through finite-difference grids. Geophysics, 60(4): 1203-1216, doi: 10.1190/1.1443849.
[19]
Levander A R. 1988. Fourth-order finite-difference P-SV seismograms. Geophysics, 53(11): 1425-1436, doi: 10.1190/1.1442422.
[20]
Li G P, Yao F C, Shi Y M, et al. 2011. Several key issues of finite-difference seismic wave numerical simulation. Progress in Geophysics (in Chinese), 26(2): 469-476, doi: 10.3969/j.issn.1004-2903.2011.02.011.
[21]
Wu Y G, He Z H, Huang D J. 2008. Wave equation forward modeling and migration for beads-shaped corroded cave model. Progress in Geophysics (in Chinese), 23(2): 539-544.
[22]
Xu S H, Han L G, Guo J. 2012. Multiwave inversion of anistropic parameter and PS wave AVO analysis in TTI media. Chinese J. Geophys. (in Chinese), 55(2): 569-576, doi: 10.6038/j.issn.0001-5733.2012.02.019.
[23]
Ye F, Chu C. 2005. Dispersion-relation-preserving finite difference operators: derivation and application. 75th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts, 1783-1786.