全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Lebedev网格改进差分系数TTI介质正演模拟方法研究

DOI: 10.6038/cjg20140121, PP. 261-269

Keywords: Lebedev网格,TTI介质,数值模拟,有限差分系数,多轴完全匹配层

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文采用一种新的交错网格-Lebedev网格(LG)进行TTI介质的正演模拟研究,避免了Virieux标准交错网格(SSG)算法在处理TTI、单斜等各向异性介质时波场插值引入的数值误差,提高了模拟精度.在方法实现过程中,本文针对有限差分正演模拟面临的网格频散与边界反射两个关键性问题分别做了优化,并通过模型试算验证了它们的有效性与可行性:(1)结合最小二乘思想推导出新的频散改进差分系数(DIC),该系数比Taylor系数更能有效地压制粗网格引起的数值频散,可以节约内存,提高计算效率;(2)将分裂的多轴完全匹配层(M-PML)吸收边界条件引入到LG算法中,解决了传统PML边界条件在某些各向异性介质中的不稳定现象并且具有较好的边界吸收效果.

References

[1]  Bécache E, Fauqueux S, Joly P. 2003. Stability of perfectly matched layers, group velocities and anisotropic waves. J. Comput. Phys., 188(2): 399-433, doi: 10.1016/S0021-9991(03)00184-0.
[2]  Bérenger J P. 1994. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys., 114(2):185-200, doi: 10.1006/jcph.1994.1159.
[3]  Cerjan C, Kosloff D, Kosloff R, et al. 1985. A nonreflecting boundary condition for discrete acoustic and elastic wave equations. Geophysics, 50(4): 705-708, doi: 10.1190/1.1441945.
[4]  Chen Y H, Chew W C, Oristaglio M L. 1997. Application of perfectly matched layers to the transient modeling of subsurface EM problems. Geophysics, 62(6):1730-1736, doi: 10.1190/1.1444273.
[5]  Kosloff R, Kosloff D. 1986. Absorbing boundaries for wave propagation problems. J. Comput. Phys., 63(2): 363-376, doi: 10.1016/0021-9991(86)90199-3.
[6]  Li Z C, Li N, Huang J P, et al. 2013. The Quantity study of the factors that influence the Shear-wave splitting time in Fracture Media. Progress in Geophysics (in Chinese), 28(1): 240-249, doi: 10.6038/pg20130125.
[7]  Lisitsa V, Vishnevskiy D. 2010. Lebedev scheme for the numerical simulation of wave propagation in 3D anisotropic elasticity. Geophysical Prospecting, 58(4): 619-635, doi: 10.1111/j.1365-2478.2009.00862.x.
[8]  Lisitsa V, Tcheverda V. 2012. Numerical simulation of seismic waves in models with anisotropic formations: coupling Virieux and Lebedev finite-difference schemes. Comput. Geosci., 16(4):1135-1152, doi: 10.1007/s10596-012-9308-0.
[9]  McGarry R, Pasalic D, Ong C. 2011. Anisotropic elastic modeling on a Lebedev grid: Dispersion reduction and grid decoupling. 81th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts, 2829-2833.
[10]  Meza-Fajardo K C, Papageorgiou A S. 2008. A non-convolutional split-field, perfectly matched layer for wave propagation in isotropic and anisotropic elastic media: stability analysis. Bulletin of the Seismological Society of America, 98(4): 1811-1836, doi: 10.1785/0120070223.
[11]  Saenger E H, Gold N, Shapiro S A. 2000. Modeling the propagation of elastic waves using a modified finite-difference grid. Wave Motion, 31(1): 77-92, doi: 10.1016/S0165-2125(99)00023-2.
[12]  Tam C K W, Webb J C. 1993. Dispersion-relation-preserving finite difference schemes for computational acoustics. J. Comput. Phys., 107(2): 262-281, doi: 10.1006/jcph.1993.1142.
[13]  Teng J W, Zhang Z J, Wang G J, et al. 2000. The seismic anisotropy and geodynamics of earth''s interior media. Progress in Geophysics (in Chinese), 15(1): 1-35.
[14]  Virieux J. 1986. P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method. Geophysics, 51(4): 889-901, doi: 10.1190/1.1442147.
[15]  Chew W C, Weedon W H. 1994. A 3-D perfectly matched medium from modified Maxwell''s equations with stretched coordinates. Microwave and Optical Technology Letters, 7(13): 599-604, doi: 10.1002/mop.4650071304.
[16]  Clayton R, Engquist B. 1980. Absorbing boundary conditions for wave-equation migration. Geophysics, 45(5): 895-904, doi: 10.1190/1.1441094.
[17]  Hao C T, Yao C, Wang X. 2006. The characteristics of velocities with azimuth variation for arbitrary spatial orientation TI media. Progress in Geophysics (in Chinese), 21(2): 524-530, doi: 10.3969/j.issn.1004-2903.2006.02.029.
[18]  Igel H, Mora P, Riollet B. 1995. Anisotropic wave propagation through finite-difference grids. Geophysics, 60(4): 1203-1216, doi: 10.1190/1.1443849.
[19]  Levander A R. 1988. Fourth-order finite-difference P-SV seismograms. Geophysics, 53(11): 1425-1436, doi: 10.1190/1.1442422.
[20]  Li G P, Yao F C, Shi Y M, et al. 2011. Several key issues of finite-difference seismic wave numerical simulation. Progress in Geophysics (in Chinese), 26(2): 469-476, doi: 10.3969/j.issn.1004-2903.2011.02.011.
[21]  Wu Y G, He Z H, Huang D J. 2008. Wave equation forward modeling and migration for beads-shaped corroded cave model. Progress in Geophysics (in Chinese), 23(2): 539-544.
[22]  Xu S H, Han L G, Guo J. 2012. Multiwave inversion of anistropic parameter and PS wave AVO analysis in TTI media. Chinese J. Geophys. (in Chinese), 55(2): 569-576, doi: 10.6038/j.issn.0001-5733.2012.02.019.
[23]  Ye F, Chu C. 2005. Dispersion-relation-preserving finite difference operators: derivation and application. 75th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts, 1783-1786.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133