全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于GPU并行的重力、重力梯度三维正演快速计算及反演策略

DOI: 10.6038/j.issn.0001-5733.2012.12.019, PP. 4069-4077

Keywords: GPU,CUDA,正演计算,重力,重力梯度,加速比

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用NVIDIACUDA编程平台,实现了基于GPU并行的重力、重力梯度三维快速正演计算方法.采用当前在重力数据约束反演或联合反演中流行的物性模型(密度大小不同、规则排列的长方体单元)作为地下剖分单元,对任意三维复杂模型体均可用很多物性模型进行组合近似,利用解析方法计算出所有物性模型在计算点的异常值并累加求和,得到整个模型体在某一计算点引起的重力(或重力梯度)值.针对精细的复杂模型体产生的问题,采用GPU并行计算技术,主要包括线程有效索引与优化的并行归约技术进行高效计算.在显卡型号为NVIDIAQuadro2000相对于单线程CPU程序,重力和重力梯度Uxx、Uxy正演计算可以分别达到60与50倍的加速.本文还讨论了GPU并行计算在两种反演方法中的策略,为快速三维反演技术提供了借鉴.

References

[1]  郭良辉, 孟小红, 石磊. 磁异常ΔT三维相关成像. 地球物理学报, 2010, 53(2): 435-441. Guo L H, Meng X H, Shi L. 3D correlation imaging for magnetic anomaly ΔT data. Chinese J. Geophys. (in Chinese), 2010, 53(2): 435-441.
[2]  Last B J, Kubik K. Compact gravity inversion. Geophysics, 1983, 48(6): 713-721.
[3]  Li Y G, Oldenburg D W. Fast inversion of large-scale magnetic data using wavelet transforms and a logarithmic barrier method. Geophys. J. Int., 2003, 152(2): 251-265.
[4]  Constable S C, Parker R L, Constable C G. Occam''s inversion: A practical algorithm for generation smooth models from electromagnetic sounding data. Geophysics, 1987, 52(3): 289-300.
[5]  Li Y G, Oldenburg D W. 3D inversion of gravity data. Geophysics, 1998, 63(1): 109-119.
[6]  Li Y G, Oldenburg D W. 3D inversion of magnetic data. Geophysics, 1996, 61(2): 394-408.
[7]  Li Y G, Oldenburg D W. Joint inversion of surface and three-component borehole magnetic data. Geophysics, 1996, 65(2): 540-552.
[8]  Pilkington M. 3-D magnetic imaging using conjugate gradients. Geophysics, 1997, 62(4): 1132-1142.
[9]  Nagihara S, Hall S A. Three-dimensional gravity inversion using simulated annealing: Constraints on the diapiric roots of allochthonous salt structures. Geophysics, 2001, 66(5): 1438-1449.
[10]  姚长利, 郝天珧, 管志宁等. 重磁遗传算法三维反演中高速计算及有效存储方法技术. 地球物理学报, 2003, 46(2): 252-258. Yao C L, Hao T Y, Guan Z N, et al. High-speed computation and efficient storage in 3-D gravity and magnetic inversion based on genetic algorithms. Chinese J. Geophys. (in Chinese), 2003, 46(2): 252-258.
[11]  姚长利, 郑元满, 张聿文. 重磁异常三维物性反演随机子域法方法技术. 地球物理学报, 2007, 50(5): 1576-1583. Yao C L, Zheng Y M, Zhang Y W. 32D gravity and magnetic inversion for physical properties using stochastic subspaces. Chinese J. Geophys. (in Chinese), 2007, 50(5): 1576-1583.
[12]  Zhang S, Chu Y L. GPU High-Performance Computing-CUDA. Beijing: China Water Power Press, 2009.
[13]  刘国峰, 刘洪, 李博等. 山地地震资料叠前时间偏移方法及其GPU实现. 地球物理学报, 2009, 52(12): 3101-3108. Liu G F, Liu H, Li B, et al. Method of prestack time migration of seismic data of mountainous regions and its GPU implementation. Chinese J. Geophys. (in Chinese), 2009, 52(12): 3101-3108.
[14]  Nagy D. The gravitational attraction of a right rectangular prism. Geophysics, 1966, 31(2): 361-371.
[15]  Moorkamp M, Jegen M, Roberts A, et al. Massively parallel forward modeling of scalar and tensor gravimetry data. Computers and Geosciences, 2010, 36(5): 680-686.
[16]  Chen Z X, Meng X H, Guo L H, et al. GICUDA: A parallel program for 3D correlation imaging of large scale gravity and gravity gradiometry data on graphics processing units with CUDA. Computers and Geosciences, 2012, 46: 119-128.
[17]  Nabighain M N, Grauch V J S, Hansen R O, et al. 75th anniversary-The historical development of the magnetic method in exploration. Geophysics, 2005, 70(6): 33ND-61ND.
[18]  Nabighain M N, Ander M E, Grauch V J S, et al. 75th anniversary-Historical development of the gravity method in exploration. Geophysics, 2005, 70(6): 63ND-89ND.
[19]  Guspí F, Introcaso B. A sparse spectrum technique for gridding and separating potential field anomalies. Geophysics, 2000, 65(4): 1154-1161.
[20]  Meng X H, Guo L H, Chen Z X, et al. A method for gravity anomaly separation based on preferential continuation and its application. Applied Geophysics, 2009, 6(3): 217-225.
[21]  郭良辉, 孟小红, 石磊等. 重力和重力梯度数据三维相关成像. 地球物理学报, 2009, 52(4): 1098-1106. Guo L H, Meng X H, Shi L, et al. 3D correlation imaging for gravity and gravity gradiometry data. Chinese J. Geophys. (in Chinese), 2009, 52(4): 1098-1106.
[22]  刘天佑, 杨宇山, 李媛媛等. 大型积分方程降阶解法与重力资料曲面延拓. 地球物理学报, 2007, 50(1): 290-296. Liu T Y, Yang Y S, Li Y Y, et al. The order-depression solution for large-scale integral equation and its application in the reduction of gravity data to a horizontal plane. Chinese J. Geophys. (in Chinese), 2007, 50(1): 290-296.
[23]  刘天佑. 位场勘探数据处理新方法. 北京: 科学出版社, 2007. Liu T Y. New Data Processing Methods for Potential Field Exploration (in Chinese). Beijing: Science Press, 2007.
[24]  Fedu M, Quarta T. Wavelet analysis for the regional-residual and local separation of potential field anomalies. Geophysical Prospecting, 1998, 46(5): 507-525.
[25]  Portniaguine O, Zhdanov M S. Focusing geophysical inversion images. Geophysics, 1999, 64(3): 874-887.
[26]  Portniaguine O, Zhdanov M S. 3-D magnetic inversion with data compression and image focusing. Geophysics, 2002, 67(5): 1532-1541.
[27]  Boulanger O, Chouteau M. Constraints in 3D gravity inversion. Geophysical Prospecting, 2001, 49(2): 265-280.
[28]  Fedi M, Rapolla A. 3D inversion of gravity and magnetic data with depth resolution. Geophysics, 1999, 64(2): 452-460.
[29]  Li Y G, Oldenburg D W. Fast inversion of large-scale magnetic data using wavelet transform and a logarithmic barrier method. Geophys. J. Int., 2003, 152(2): 251-265.
[30]  李博, 刘国峰, 刘洪. 地震叠前时间偏移的一种图形处理器提速实现方法. 地球物理学报, 2009, 52(1): 245-252 Li B, Liu G F, Liu H. A method of using GPU to accelerate seismic pre-stack time migration. Chinese J. Geophys. (in Chinese), 2009, 52(1): 245-252.
[31]  Sanders J, Kandrot E. CUDA by Example-An Introduction to General Purpose GPU Programming. Pearson Education Press, 2010.
[32]  刘国峰, 刘钦, 李博等. 油气勘探地震资料处理GPU/CPU协同并行计算. 地球物理学进展, 2009, 24(5): 1671-1678. Liu G F, Liu Q, Li B, et al. GPU/CPU co-processing parallel computation for seismic data processing in oil and gas exploration. Progress in Geophys (in Chinese), 2009, 24(5): 1671-1678.
[33]  Li X, Chouteau M. Three-dimensional gravity modeling in all space. Surveys in Geophysics, 1998, 19(4): 339-368.
[34]  郭志宏, 管志宁, 熊盛青. 长方体ΔΤ场及其梯度场无解析奇点理论表达式. 地球物理学报, 2004, 47(6): 1131-1138. Guo Z H, Guan Z N, Xiong S Q. Cuboid ΔΤ and its gradient forward theoretical expressions without analytic odd points. Chinese J. Geophys. (in Chinese), 2004, 47(6): 1131-1138.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133