全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

相控震源在矿产勘探中应用的数值模拟研究

DOI: 10.6038/j.issn.0001-5733.2012.12.038, PP. 4266-4276

Keywords: 大深度,相控,数值模拟,有限差分,信噪比

Full-Text   Cite this paper   Add to My Lib

Abstract:

为满足深部矿区精细勘探的需求,研究适于矿区的震源技术至关重要.在便携式电磁驱动可控震源应用于矿区勘探过程中,单电磁驱动可控震源和组合震源分辨率不高.本文基于相控震源技术,采用有限差分方法,对二维地下空间不同介质模型的波场传播及地面接收点的响应进行数值模拟.模拟中,震源分别使用单震源、延时时间为0ms及1.33ms的9单元相控源,介质模型采用均匀、水平层状、不规则矿区模型,得到如下结果:均匀介质下相控震源激励定向地震波,0ms、1.33ms延时参数下相控源激发固定方向地震波,方向分别为90°和70.4°;层状介质模型下,0ms参数下相控源产生的垂向地震波方向不随介质变化,1.33ms相控源激励的定向地震波在不同介质中仍然具有方向性,但随波速变化,地震波发生偏折,地震波主波束方向由70.4°,依次变为68.5°,66.0°,63.7°,61.1°;不规则矿区模型下,1.33ms相控源激发的地震波在首层介质内传播方向为70.4°,围岩内为65.4°,矿体内为63.1°.在水平层状矿区介质结构下,与单震源相比,1.33ms和0ms相控源令接收点信噪比分别提高了14.1dB和10.2dB;在不规则矿区模型下,1.33ms和0ms相控源较单震源令接收点信噪比提高了18.9dB和14.9dB.由此得到如下结论:相控源在复杂介质模型下仍具有激发定向地震波的能力,尽管波束方向在不同介质内会发生偏折;在多种延时参数下,相控源都具有改善接收数据信噪比的能力.综上所述,相控震源技术能有效提高矿集区的数据采集质量.

References

[1]  张智, 刘财, 邵志刚. 地震勘探中的炸药震源药量理论与实验分析. 地球物理学进展, 2003, 18(4): 724-728. Zhang Z, Liu C, Shao Z G. Theory and experimentation of the charge sizes in seismic-sources for seismic exploration seismic-sources for seismic exploration. Progress in Geophysics (in Chinese), 2003, 18(4): 724-728.
[2]  林君. 电磁驱动可控震源地震勘探原理及应用. 北京: 科学出版社, 2004. Lin J. Seismic Exploration and Application of Vibrator Driven by Electromagnetic (in Chinese). Beijing: Science Press, 2004.
[3]  Garrod A. Digital modules for phase array radar. // IEEE International Radar Conference. Alexandria, VA: IEEE, 1995: 726-731.
[4]  Arnold M E. Beam forming with vibrator arrays. Geophysics, 1977, 42(7): 1321-1338.
[5]  姜弢. 基于相控震源的地震波定向方法研究. 吉林: 吉林大学仪器科学与电气工程学院, 2006. Jiang T. Study on seismic beam-forming method based on phased-array vibrator system(in Chinese). Jilin: College of Instrumentation Electrical Engineering, 2006.
[6]  Kahkomen S, Glowinski R, Rossi T, et al. Solution of Time-Periodic wave equation using mixed finite elements and controllability techniques. Journal of Computational Acoustics, 2011, 19(4): 335-352.
[7]  Carlos S, Escolano J, Garriga A. Semi-empirical boundary conditions for the linearized acoustic Euler equations using Pseudo-Spectral Time-Domain methods. Applied Acoustics, 2011, 72(4): 226-230.
[8]  李淅龙. 煤矿井下反射地震勘探技术初步研究与应用. 西安: 西安大学, 2010. Li X L. The Preliminary Study Andapplication of Reflection Seismic Exploration Technique Applied in Coal Mine Underground(in Chinese). Xi''an: Xi''an University of Science and Technology, 2010.
[9]  单延明, 吴清岭, 于承业等. 复杂地质构造波动方程数值模拟. 物探化探计算技术, 2002, 24(1): 22-26. Shan Y M, Wu Q L, Yu C Y, et al. Wave equation modeling for complex media. Computing Techniques for Geophysical and Geochemical Exploration (in Chinese), 2002, 24(1): 22-26.
[10]  姜弢, 林君, 李桐林等. 相控震源对地震信号信噪比的改善研究. 地球物理学报, 2006, 49(6): 1819-1825. Jiang T, Lin J, Li T L, et al. Boosting signal to noise ratio of seismic signals using the phased-array vibrator system. Chinese J. Geophys. ( in Chinese), 2006, 49(6): 1819-1825.
[11]  裴正林, 牟永光. 地震波传播数值模拟. 地球物理学进展, 2004, 19(4): 933-941. Pei Z L, Mu Y G. Numerical simulation of seismic wave propagation. Progress in Geophysics (in Chinese), 19(4): 933-941.
[12]  姜弢, 林君, 杨冬等. 相控震源定向地震波信号分析. 地球物理学报, 2008, 51(5): 1551-1556. Jiang T, Lin J, Yang D, et al. Analysis of directional seismic signal based on phased-array vibrator system. Chinese J. Geophys. (in Chinese), 2008, 51(5): 1551-1556.
[13]  姜弢, 林君, 陈祖斌等. 相控震源对水平层状地下介质的高信噪比检测. 仪器仪表学报, 2006, 27(11): 1396-1372. Jiang T, Lin J, Chen Z B, et al. High signal-to-noise ratio detection of horizontal layer underground medium with phased-array vibroseis. Chinese Journal of Scientific Instrument (in Chinese), 2006, 27(11): 1369-1372.
[14]  姜弢, 林君, 陈祖斌等. 相控震源地震波定向技术. 吉林大学学报(信息科学版), 2004, 22(3): 181-184. Jiang T, Lin J, Chen Z B, et al. Seismic beam-forming in phased array of vibroseis. Journal of Jilin University (Information Science Edition) (in Chinese), 2004, 22(3): 181-184.
[15]  王忠仁, 林君, 冯声涯. 地震勘探中相控阵震源的方向特性研究. 地球物理学报, 2006, 49(7): 1191-1197. Wang Z R, Lin J, Feng S Y. Directivity of phase array vibrators in seismic exploration. Chinese J. Geophys. (in Chinese), 2006, 49(4): 1191-1197.
[16]  Konishi Y. Phased array antennas. IEICE Transactions on Communications, 2003, E86B(3): 954-967.
[17]  朱崇灿. 天线. 武汉: 武汉大学出版社, 1996. Zhu C C. Antenna (in Chinese). Wuhan: Wuhan University Press, 1996.
[18]  乔文孝, 车小花, 鞠晓东等. 声波测井相控圆弧阵及其辐射指向性. 地球物理学报, 2008, 51 (3): 939-946. Qiao W X, Che X H, Ju X D, et al. Acoustic logging phased arc array and its radiation directivity. Chinese J. Geophys. (in Chinese), 2008, 51(3): 939-946.
[19]  Che X H, Qiao W X. Numerical simulation of an acoustic field generated by a phased arc array in a fluid-filled borehole. Petroleum Science, 2009, 6(3): 225-229.
[20]  乔文孝, 杜光升, 陈雪莲. 相控线阵声波辐射器在声波测井中应用的可行性分析. 地球物理学报, 2002, 45(5): 714-722. Qiao W X, Du G S, Chen X L. Feasibility of application of phased array in acoustic well-logging. Chinese J. Geophys. (in Chinese), 2002, 45(5): 714-722.
[21]  Mohanty R K, Venu G. High accuracy cubic spline finite difference approximation for the solution of one-space dimensional non-linear wave equations. Applied Mathematics and Computation, 2011, 218(8): 4234-4244.
[22]  Liu Y, Sen M K. Numerical modeling of wave equation by a truncated high-order finite-difference method. Earthq. Sci., 2009, 22(2): 205-213.
[23]  Phongthanapanich S, Dechaumphai P. An explicit finite volume element method for solving characteristic level set equation on triangular grids. Acta Mechanica Sinica, 2011, 27(6): 911-921.
[24]  René M. An efficient finite element time-domain formulation for the elastic second-order wave equation: Anon-split complex frequency shifted convolutional PML. Int. J. Numer. Meth. Engng., 2011, 88(10): 951-973.
[25]  Reynolds A C. Boundary conditions f or the numerical solution of wave propagation problems. Geophysics, 1978, 43(6): 1099-1110.
[26]  姜弢, 林君, 陈祖斌等. 可控震源相控地震的相关检测技术. 仪器仪表学报, 2005, 26(4): 336-339. Jiang T, Lin J, Chen Z B, et al. The correlation detection method of signals in phased array of vibroseis system. Chinese Journal of Scientific Instrument (in Chinese), 2005, 26(4): 336-339.
[27]  杨莹. 二维地震波场有限差分法数值模拟研究. 北京: 中国地质大学, 2009. Yang Y. The research on Two-dimensional Finite-difference seismic wave field numerical simulation(in Chinese). Beijing: China University of Geosciences, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133