全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

海岸效应对近海地区大地电磁测深数据畸变作用研究

DOI: 10.6038/j.issn.0001-5733.2012.12.014, PP. 4023-4035

Keywords: 海岸效应,大地电磁测深,正演模拟,反演

Full-Text   Cite this paper   Add to My Lib

Abstract:

在近海地区采集的大地电磁测深数据通常受到海岸效应的影响,使得大地电磁测深数据发生畸变,因而很难利用大地电磁测深资料较为可靠地获得地下深部的电性结构.本文通过正演模拟方法,分析和总结海水深度变化和海底地形变化对近海地区大地电磁测深数据的畸变影响.当测区与海岸线的距离小于目标频率的大地电磁场趋肤深度时,高导海洋的存在会严重影响测区内电磁场的分布.由于海岸效应的影响,大地电磁测深视电阻率曲线和相位曲线均会发生不同程度的畸变,在低频部分,这种畸变作用尤为明显.大地电磁测深一维Occam反演方法和二维非线性共轭梯度反演方法,对近海地区浅部地层具有较好的反演效果.随着海水深度的增加和海底地形的复杂变化,两种反演方法均会出现不同程度的假异常,为地质解释工作造成了影响.近渤海地区的实测大地电磁测深数据在低频部分可能受到海岸效应的影响而导致视电阻率曲线的严重畸变.

References

[1]  Parkinson W D. Directions of rapid geomagnetic fluctuations. Geophys. J. R. Astr. Soc., 1959, 2(1): 1-14.
[2]  Jones F W, Price A T. The perturbations of alternating 图13 B1测点大地电磁测深一维Occam反演模型 (A) TE模式;(B) TM 模式;(a1,b1) 视电阻率;(a2,b2)相位;(a3,b3)一维模型. Fig.13 1D model of B1 station with 1D Occam inversion geomagnetic fields by conductivity anomalies. Geophys. J. R. Astr. Soc., 1970, 20(3): 317-334.
[3]  杨文采, 方慧, 程振炎等. 苏鲁超高压变质带北部地球物理调查(II)——非地震方法. 地球物理学报, 1999, 42(4): 508-519. Yang W C, Fang H, Cheng Z Y, et al. Geophysical investigation of Northern Sulu UHPM Terrane in East China (II): Non-seismic Methods. Chinese J. Geophys. (in Chinese), 1999, 42(4): 508-519.
[4]  Snatos F M, Nolasco M, Almeida E P, et al. Coast effects on magnetic and magnetotelluric transfer functions and their correction: application to MT soundings carried out in SW Iberia. Earth Planet. Sci. Lett., 2001, 186: 283-295.
[5]  Yang J M, Min D J, Yoo H S. Sea effect correction in magnetotelluric (MT) data and its application to MT soundings carried out in Jeju Island, Korea. Geophys. J. Int., 2010, 182: 727-740.
[6]  Chave A D, Thomson D J. Bounded influence magnetotelluric response function estimation. Geophys. J. Int., 2004, 157(3): 988-1006.
[7]  McNeice G W, Jones A G. Multisite, multifrequency tensor decomposition of magnetotelluric data. Geophysics, 2001, 66(1): 158-173.
[8]  Baba K, Chave A D. Correction of seafloor magnetotelluric data for topographic effects during inversion. J. Geophys. Res., 2005, 110: B12105, doi:10.1029/2004JB003463.
[9]  Matsuno T, Seama N, Baba K. A study on correction equations for the effect of seafloor topography on ocean bottom magnetotelluric data. Earth Planets Space, 2007, 59(8): 981-986.
[10]  Nam M J, Kim H J, Song Y, et al. Three-dimensional topography corrections of magnetotelluric data. Geophys. J. Int., 2008, 174(2): 464-474.
[11]  Mackie R L, Bennett B R, Madden T R. Long-period magnetotelluric measurements near the Central California Coast: a land-locked view of the conductivity structure under the Pacific Ocean. Geophysical Journal, 1988, 95(1): 181-194.
[12]  石应骏, 刘国栋, 吴广耀等. 大地电磁测深法教程. 北京: 地震出版社, 1985. Shi Y J, Liu G D, Wu G Y, et al. Magnetotellurics (in Chinese). Beijing: Seismological Press, 1985.
[13]  冯士筰, 李凤岐, 李少菁. 海洋科学导论. 北京: 高等教育出版社, 1999. Feng S Z, Li F Q, Li S J. An Introduction to Marine Science (in Chinese). Beijing: Higher Education Press, 1999.
[14]  李桐林, 林君, 王东坡等. 海陆电磁噪声与滩海大地电磁测深研究. 北京: 地质出版社, 2001. Li T L, Lin J, Wang D P, et al. The Oceanic and Terrestrial Noise and Shallow Marine Magnetotelluric Study (in Chinese). Beijing: Geological Publishing House, 2001.
[15]  Parkinson W D. The influence of continents and oceans on geomagnetic variations. Geophys. J. R. Astr. Soc., 1962, 6(4): 441-449.
[16]  Parkinson W D, Jones F W. The geomagnetic coast effect. Reviews of Geophysics, 1979, 17(8): 1999-2015.
[17]  Nolasco R, Tarits P, Filloux J H, et al. Magnetotelluric imaging of the Society Islands hotspot. J. Geophys. Res., 1998, 103(B12): 30287-30309.
[18]  Fischer G. Electromagnetic induction effects at an ocean coast. Proceedings of the IEEE, 1979, 67(7): 1050-1060.
[19]  Simpson F, Bahr K. Practical Magnetotellurics. Cambridge: Cambridge University Press, 2005.
[20]  Unsworth M, Soyer W, Tuncer V, et al. Hydrogeologic assessment of the Amchitka Island nuclear test site (Alaska) with magnetotellurics. Geophysics, 2007, 72(3): B47-B57.
[21]  Mackie R L, Smith J T, Madden T R. Three-dimensional electromagnetic modeling using finite difference equations: The magnetotelluric example. Radio Science, 1994, 29(4): 923-935.
[22]  胡祖志, 胡祥云. 大地电磁三维反演方法综述. 地球物理学进展, 2005, 20(1): 214-220. Hu Z Z, Hu X Y. Review of three dimensional magnetotelluric inversion methods. Progress in Geophysics (in Chinese), 2005, 20(1): 214-220.
[23]  胡祖志, 胡祥云, 何展翔. 大地电磁非线性共轭梯度拟三维反演. 地球物理学报, 2006, 49(4): 1226-1234. Hu Z Z, Hu X Y, He Z X. Pseudo-Three-Dimensional magnetotelluric inversion using nonlinear conjugate gradients. Chinese J. Geophys. (in Chinese), 2006, 49(4): 1226-1234.
[24]  Constable S C, Parker R L, Constable C G. Occam''s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 1987, 52(3): 289-300.
[25]  Rodi W, Mackie R L. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics, 2001, 66(1): 174-187.
[26]  Young C T, Kitchen M R. A magnetotelluric transect in the Oregon coast range. J. Geophys. Res., 1989, 94(10): 185-193.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133