全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

用于声波方程数值模拟的时间-空间域有限差分系数确定新方法

DOI: 10.6038/cjg20131024, PP. 3497-3506

Keywords: 声波正演,时间-空间域,有限差分格式,频散关系

Full-Text   Cite this paper   Add to My Lib

Abstract:

声波方程数值模拟已广泛应用于理论地震计算,同时构成了地震逆时偏移成像技术的基础.对于有限差分法而言,在满足一定的稳定性条件时,普遍存在着因网格化而形成的数值频散效应.如何有效地缓解或压制数值频散是有限差分方法研究的关键所在.为精确求解空间偏导数,相继发展了高阶差分格式优化方法和伪谱方法.近期,为更好地缓解数值频散,提出了时间-空间域有限差分方法,该方法采用了泰勒展开近似方法来确定有限差分格式系数,因而只能保证在一定的小范围内很好的拟合波场传播规律.为进一步压制数值频散效应,本文引入了时间-空间域特定波数点满足频散关系的方法,根据震源、波速和网格间距确定波数范围,同时考虑了多个传播角度,然后建立方程确定了相应的有限差分格式系数,使得差分系数能在更大范围符合波场传播规律.通过频散分析和正演模拟,验证了本文方法的有效性.

References

[1]  Chen J B. A stability formula for Lax-Wendroff methods with fourth-order in time and general-order in space for the scalar wave equation. Geophysics, 2011, 76(2): T37-T42.
[2]  Etgen J T. A tutorial on optimizing time domain finite-difference scheme: "Beyond Holberg". Stanford Exploration Project, 2007.
[3]  de Basabe J D, Sen M K. Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equations. Geophysics, 2007, 72(6): T81-T95.
[4]  Liu Y, Sen M K. Acoustic VTI modeling with a time-space domain dispersion-relation-based finite-difference scheme. Geophysics, 2010, 75(3): A11-A17.
[5]  Kosloff D, Pestana R C, Tal-Ezer H. Acoustic and elastic numerical wave simulations by recursive spatial derivative operators. Geophysics, 2010, 75(6): T167-T174.
[6]  Chu C L, Stoffa P L. Implicit finite-difference simulations of seismic wave propagation. Geophysics, 2012, 77(2): T57-T67.
[7]  Chu C L, Stoffa P L. Determination of finite-difference weights using scaled binomial windows. Geophysics, 2012, 77(3): W17-W26.
[8]  兰海强, 刘佳, 白志明. VTI介质起伏地表地震波场模拟. 地球物理学报, 2011, 54(8): 2072-2084. Lan H Q, Liu J, Bai Z M. Wave-field simulation in VTI media with irregular free surface. Chinese J. Geophys. (in Chinese), 2011, 54(8): 2072-2084.
[9]  王珺, 杨长春, 冯英杰. 用优化通量校正传输技术压制数值模拟的频散. 勘探地球物理进展, 2007, 30(4): 252-256. Wang J, Yang C C, Feng Y J. Elimination of numerical dispersion in finite-difference modeling by optimized flux-corrected transport. Progress in Exploration Geophysics (in Chinese), 2007, 30(4): 252-256.
[10]  刘红伟, 刘洪, 李博等. 起伏地表叠前逆时偏移理论及GPU加速技术. 地球物理学报, 2011, 54(7): 1883-1892. Liu H W, Liu H, Li B, et al. Pre-stack reverse time migration for rugged topography and GPU acceleration technology. Chinese J. Geophys. (in Chinese), 2011, 54(7): 1883-1892.
[11]  李博, 李敏, 刘红伟等. TTI介质有限差分逆时偏移的稳定 性探讨. 地球物理学报, 2012, 55(4): 1366-1375. Li B, Li M, Liu H W, et al. Stability of reverse time migration in TTI media. Chinese J. Geophys. (in Chinese), 2012, 55(4): 1366-1375.
[12]  刘红伟, 刘洪, 邹振等. 地震叠前逆时偏移中的去噪与存储. 地球物理学报, 2010, 53(9): 2171-2180. Liu H W, Liu H, Zou Z. The problems of denoise and storage in seismic reverse time migration. Chinese J. Geophys. (in Chinese), 2010, 53(9): 2171-2180.
[13]  韩令贺, 何兵寿, 张会星. VTI 介质中准P波方程叠前逆时深度偏移. 地震学报, 2011, 33(2): 209-218 Han L H, He B S, Zhang H X. Prestack reverse-time depth migration of quasi P- wave equations in VTI media. Acta Seismologica Sinica, 2012, 33(2): 209-218.
[14]  冯英杰, 杨长春, 吴萍. 地震波有限差分模拟综述. 地球物理学进展, 2007, 22(2): 487-491. Feng Y J, Yang C C, Wu P. The review of the finite-difference elastic wave motion modeling. Progress in Geophysics (in Chinese), 2007, 22(2): 487-491.
[15]  Dablain M A. The application of high-order differencing to the scalar wave equation. Geophysics, 1986, 51(1): 54-66.
[16]  Chen J B. High-order time discretizations in seismic modeling. Geophysics, 2007, 72(5): SM115-SM122.
[17]  Finkelstein B, Kastner R. A comprehensive new methodology for formulating FDTD schemes with controlled order of accuracy and dispersion. IEEE Transactions on Antennas and Propagation, 2008, 56(11): 3516-3525.
[18]  Finkelstein B, Kastner R. Finite difference time domain dispersion reduction schemes. Journal of Computational Physics, 2006, 221(1): 422-438.
[19]  Liu Y, Sen M K. Advanced finite-difference methods for seismic modeling. Geohorizons, 2009, 14(2): 5-16.
[20]  Liu Y, Sen M K. Finite-difference modeling with adaptive variable-length spatial operators. Geophysics, 2011, 76(4): T79-T89.
[21]  Liu Y, Sen M K. A new time-space domain high-order finite-difference method for the acoustic wave equation. Journal of Computational Physics, 2009, 228(23): 8779-8806.
[22]  王彦飞. 反演问题的计算方法及其应用.北京:高等教育出版社,2007. Wang Y F. Computational Methods for Inverse Problems and Their Applications. Beijing: Higher Education Press, 2007.
[23]  Alford R M, Kelly K R, Boore D M. Accuracy of finite-difference modeling of the acoustic wave equation. Geophysics, 1974, 39(6): 834-842.
[24]  Kelly K R, Ward R W, Treitel S, et al. Synthetic seismograms: A finite-difference approach. Geophysics, 1976, 41(1): 2-27.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133