全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

南极洲东部普里兹湾海域重磁场特征及地壳结构

DOI: 10.6038/cjg20131011, PP. 3346-3360

Keywords: 普里兹湾,重力模拟,洋陆过渡带,有效弹性厚度

Full-Text   Cite this paper   Add to My Lib

Abstract:

普里兹湾位于南极洲东部大陆边缘,其深部地壳结构特征对认识白垩纪冈瓦纳古陆裂解和新生代大陆边缘形成具有重要意义.本文利用重磁、多道反射地震、声纳浮标折射地震和ODP钻井数据对普里兹湾海域的深部地壳结构进行了研究.研究结果显示,普里兹凹陷表现为典型的盆地负重力异常特征,其沉积基底较深,而在四夫人浅滩为高幅重力正异常,其沉积基底普遍抬升.在大陆架中部存在SW-NE向条带状基底的抬升,且呈朝NE向逐渐变深的趋势.在中大陆架外侧,均衡残余重力异常呈V字形负异常条带状分布,其两翼分别与四夫人浅滩和弗拉姆浅滩外的大陆坡相连.该异常带在大陆架中部向陆的偏移可能是由于古大陆架边缘的地形影响,推测其与普里兹冲积扇同属于洋陆过渡带向陆的部分,在重力模拟剖面表现为地壳向海逐渐减薄.普里兹冲积扇的地壳厚度较薄,平均为6km,最薄处可达4.6km,并且根据洋陆过渡带向海端的位置,推测可能属于接近洋壳厚度的过渡壳.重力异常分区的走向与兰伯特地堑在普里兹湾的构造走向基本一致,可能主要反映了二叠纪—三叠纪超级地幔柱对普里兹湾的裂谷作用的影响.该区域的自由空间重力异常和均衡残余异常均表现为超过100×10-5m/s2的高幅正异常特征,可能由位于大陆架边缘的巨厚沉积体负载在高强度岩石圈之上的区域挠曲均衡作用所导致,可能与该区域第二期裂谷期之后的沉积间断以及快速进积加厚的演化过程有关.普里兹湾磁力异常的走向与重力异常明显不同,大致可分为东北高幅正异常区和西南低幅异常区.重磁异常在走向上的差异反映高磁异常主要来源于岩浆作用形成的铁镁质火成岩的影响,并且岩浆作用的时代不同于基底隆升的时代,而可能形成于前寒武纪或者南极洲和印度板块裂谷期间(白垩纪).

References

[1]  Burov E, Poliakov A. Erosion and rheology controls on synrift and postrift evolution: verifying old and new ideas using a fully coupled numerical model. J. Geophys. Res., 2001, 106 (B8): 16461-16481.
[2]  胡健民, 刘晓春, 赵越等. 南极普里兹造山带性质及构造变 形过程. 地球学报, 2008, 29(3): 343-354. Hu J M, Liu X C, Zhao Y, et al. Advances in the study of the orogeny and structural deformation of Prydz Tectonic Belt in East Antarctica. Acta Geoscientica Sinica (in Chinese), 2008, 29(3): 343-354.
[3]  Hoek J D, Seitz H M. Continental mafic dyke swarms as tectonic indicators: an example from the Vestfold Hills, East Antarctica. Precambrian Research, 1995, 75: 121-139.
[4]  Mishra D C, Chandra Sekhar D V, Venkata Raju D C, et al. Crustal structure based on gravity-magnetic modelling constrained from seismic studies under Lambert Rift, Antarctica and Godavari and Mahanadi rifts, India and their interrelationship. Earth and Planetary Science Letters, 1999, 172(3-4): 287-300.
[5]  Hambrey M J, Ehrmann W U, Larsen B. Cenozoic glacial record of the Prydz Bay Continental Shelf, East Antarctica.//Barron J, Larsen B. Proceedings of the Ocean Drilling Program Scientific Results. TX (Ocean Drilling Program): College Station, 1991, 119: 77-132.
[6]  O''Brien P, Santis L D, Harris P, et al. Ice shelf grounding zone features of western Prydz Bay, Antarctica: sedimentary processes from seismic and sidescan images. Antarctic Science, 1999, 11(1): 78-99.
[7]  Stagg H M J. The structure and origin of Prydz Bay and MacRobertson shelf, East Antarctica. Tectonophysics, 1985, 114(1-4): 315-340.
[8]  Fedorov L V, Grikurov G E, Kurinin R G, et al. Crustal structure of the Lambert Glacier Area from geophysical data.//Craddock C, Loveless J K, Vierima T L, et al. Antarctic Geoscience. Madison: University of Wisconsin Press, 1982: 931-936.
[9]  Ishihara T, Leitchenkov G L, Golynsky A V, et al. Compilation of shipborne magnetic and gravity data images crustal structure of Prydz Bay (East Antarctica). Annali Di Geofisica, 1999, 42(2): 229-248.
[10]  O''Brien P E, Cooper A K, Richter B. Proceedings of the Ocean Drilling Program, Initial Reports, Vol. 188. College Station: Texas A&M University, 2001.
[11]  Cooper A K, Stagg H M J, Geist E. Seismic stratigraphy and structure of Prydz Bay, Antarctica: Implication from Leg 119 Drilling.//Barron J, Larsen B TX. Proceeding of the Ocean Drilling Program, Scientific Results, Vol. 119. TX (Ocean Drilling Program): College Station, 1991, 119: 5-25.
[12]  刘小汉, 赵越, 刘晓春等. 东南极格罗夫山地质特征-冈瓦纳最终缝合带的新证据. 中国科学(D辑), 2002, 32(6): 457-468. Liu X H, Zhao Y, Liu X C, et al. Geology of the grove mountains in East Antarctica. Science in China (Series D), 2003, 46(4): 305-319.
[13]  Boger S D, Wilson C J L, Fanning C M. Early Paleozoic tectonism within the East Antarctic craton: The final suture between east and west Gondwana? Geology, 2001, 29(5): 463-466.
[14]  Simpson R W, Jachens R C, Lakely R J. Airyroot: A Fortran Program for Calculating the Gravitational Attraction of an Airy Isostatic Root Out to 166. 7 KM: U. S. Geological Survey Open-File Report 83-883, 1983.
[15]  Simpson R W, Jachens R C, Blakely R J, et al. A new isostatic residual gravity map of the conterminous United States with a discussion on the significance of isostatic residual anomalies. J. Geophys. Res., 1986, 91(B8): 8348-8372.
[16]  Erohina T, Cooper A K, Handwerger D, et al. Seismic stratigraphic correlations between ODP Sites 742 and 1166: implications for depositional paleoenvironments in Prydz Bay, Antarctica//. Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 188, Cooper A K, O''Brien P E, Shipboard Scientific Party, Texas A&M University: College Station, 2004. 1-21.
[17]  Leitchenkov G, Stagg H M J, Gandjukhin V, et al. Cenozoic seismic stratigraphy of Prydz Bay (Antarctica). Terra Antartica, 1994, 1: 395-397.
[18]  Parsons B E, Sclater J G. An analysis of the variation of ocean floor bathymetry and heat flow with age. J. Geophys. Res., 1977, 82(5): 803-827.
[19]  Hemer M A, Harris P T. Sediment core from beneath the Amery Ice Shelf, East Antarctica, suggests mid-Holocene ice-shelf retreat. Geology, 2003, 31(2): 127-130.
[20]  Whitehead J M, Quilty P G, Mckelvey B C, et al. A review of the Cenozoic stratigraphy and glacial history of the Lambert Graben-Prydz Bay region, East Antarctica. Antarctic Science, 2006, 18(1): 83-99.
[21]  O''Brien P E, Leitchenkov G. Deglaciation of Prydz Bay, East Antarctica, based on echo sounding and topography features.//Barker P F, Cooper A K. Geology and Seismic Stratigraphy of the Antarctica Margin, Part 2. Washington, D C: American Geophysical Union, 1997, 71: 109-126.
[22]  Barker P F, Barret P J, Cooper A K, et al. Antarctic glacial history from numerical models and continental margin sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 150(3-4): 247-267.
[23]  Taylor F, Leventer A. Late Quaternary palaeoenvironments in Prydz Bay, East Antarctica: interpretations from marine diatoms. Antarctic Science, 2003, 15(4): 512-521.
[24]  陈廷愚, 沈延彬, 赵越等. 南极洲地质发展与冈瓦纳古陆演化. 北京: 商务印书馆, 2008. Chen T Y, Shen Y B, Zhao Y, et al. Geological Development of Antarctica and Evolution of Gondwanaland (in Chinese). Beijing: Commercial Press, 2008.
[25]  李淼, 刘晓春, 赵越. 东南极普里兹湾地区花岗岩类的锆石U-Pb年龄、地球化学特征及其构造意义. 岩石学报, 2007, 23(5): 1055-1066. Li M, Liu X C, Zhao Y. Zircon U-PB ages and geochemistry of granitoids from Prydz Bay, East Antarctica, and their tectonic significance. Acta Petrologica Sinica (in Chinese), 2007, 23(5): 1055-1066.
[26]  Kanao M, Ishikawa M, Yamashita M, et al. Structure and evolution of the East Antarctic Lithosphere, tectonic implications for the development and dispersal of Gondwana. Gondwana Research, 2004, 7(1): 31-41.
[27]  Sandwell D T, Smith W H F. Marine gravity anomalies from GEOSAT and ERS-1 satellite altimetry. J. Geophys. Res., 1997, 102(B5): 10039-10054.
[28]  Maus S, Barckhausen U, Berkenbosch H, et al. EMAG2: A 2-arc-minute resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne and marine magnetic measurements. Geochemistry Geophysics Geosystems (G3), 2009, 10: 1-12.
[29]  Cochrane G R, Cooper A K. Sonobuoy seismic studies at ODP drill sites in Prydz Bay, Antarctica.//Barron J, Larsen B, et al. Proc. ODP, Sci. Results, 119: College Station, TX (Ocean Drilling Program), 1991, 27-44.
[30]  Fullea J, Fernàndez M, Zeyen H. FA2BOUG-A FORTRAN 90 Code to Compute Bouguer Gravity Anomalies from Gridded Free-Air Anomalies: Application to the Atlantic-Mediterranean Transition Zone. Computers & Geosciences, 2008, 34(12): 1665-1681.
[31]  Stagg H M J, Colwel J B, Direen N G, et al. Geology of the continental margin of Enderby and Mac. Robertson Lands, East Antarctica: Insights from a regional data set. Marine Geophysical Research, 2004, 25(3-4): 183-219.
[32]  Watts A B. Isostasy and Flexure of the Lithosphere. New York: Cambridge University Press, 2001.
[33]  Karner G D, Watts A B. On isostasy at Atlantic-type continental margins. J. Geophys. Res., 1982, 87(B4): 2923-2948.
[34]  Close D I, Watts AB, Stagg H M J. A marine geophysical study of the Wilkes Land rifted continental margin, Antarctica. Geophys. J. Int., 2009, 177(2): 430-450.
[35]  Watts A B, Rodger M, Peirce C, et al. Seismic structure, gravity anomalies, and flexure of the Amazon continental margin, NE Brazil. J. Geophys. Res., 2009, 114: B07103, doi: 10.1029/2008JB006259.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133