全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

从瞬变电磁扩散场到拟地震波场的全时域反变换算法

DOI: 10.6038/cjg20131033, PP. 3581-3595

Keywords: 瞬变电磁,全时域波场变换,超松弛预条件,正则化,共轭梯度法

Full-Text   Cite this paper   Add to My Lib

Abstract:

将瞬变电磁满足的扩散方程转变为波动方程,然后利用地震类成像方法实现瞬变电磁虚拟波场成像,是实现瞬变电磁三维反演的有效手段之一.为了实现由扩散场到虚拟波场的转换,文中采用预条件正则化共轭梯度法求解波场反变换问题.首先,对几种离散方式进行比较,采用条件数最小的离散方式进行离散;然后选择最优的正则化参数,并利用超松弛预条件技术对系数矩阵进行预条件处理;最后,利用共轭梯度法进行迭代求解.超松弛预条件有效降低了系数矩阵的条件数,正则化方法使得反变换得到的波场稳定、可靠,共轭梯度法能够保证计算快速收敛.将反变换结果与已知虚拟波场函数对比,证明算法稳定、可信.将文中算法结果与前人研究结果进行对比,说明方法效果.通过实测数据的波场变换处理给出了文中方法的实际应用效果.结合反变换算法,对不同参数模型进行分析,总结了虚拟波场在色散介质中的传播规律.

References

[1]  Levv S, Oldenburg D, Wang J. Subsurface imaging using magnetotelluric data. Geophysics, 1988, 53(1): 104-117.
[2]  王家映. 我国大地电磁测深研究新进展. 地球物理学报, 1997, 40(S1): 206-216. Wang J Y. New development of magnetotelluric sounding in China. Acta Geophysica Sinica (Chinese J. Geophys.) (in Chinese), 1997, 40(S1): 206-216.
[3]  郭文波, 李貅, 薛国强等. 瞬变电磁快速成像解释系统研究. 地球物理学报, 2005, 48(6): 187-192. Guo W B, Li X, Xue G Q, et al. A study of the interpretation system for TEM tomography. Chinese J. Geophys. (in Chinese), 2005, 48(6): 187-192.
[4]  李貅. 瞬变电磁虚拟波场的三维曲面延拓成像研究. 西安: 西安交通大学, 2005. Li X. The study about 3-D surface extension imaging technique in transient electromagnetic fictitious wave-field (in Chinese). Xi''an: Xi''an Jiaotong University, 2005.
[5]  李貅, 郭文波, 胡建平. 瞬变电磁测深快速拟地震解释方法及应用效果. 西安工程学院学报, 2001, 23(3): 42-45. LI X, Guo W B, Hu J P. The method and application effects of pseudo-seismic interpretation of TEM. Journal of Xi''an Engineering University (in Chinese), 2001, 23(3): 42-45.
[6]  李貅, 戚志鹏, 薛国强等. 瞬变电磁虚拟波场的三维曲面延拓成像. 地球物理学报, 2010, 53(12): 3005-3011. Li X, Qi Z P, Xue G Q, et al. Three dimensional curved surface continuation image based on tem pseudo wave-field. Chinese J. Geophys. (in Chinese), 2010, 53(12): 3005-3011.
[7]  李貅, 薛国强, 宋建平等. 从瞬变电磁场到波场的优化算法. 地球物理学报, 2005, 48(5): 1185-1190. Li X, Xue G Q, Song J P, et al. An optimize method for transient electromagnetic field-wave field conversion. Chinese J. Geophys. (in Chinese), 2005, 48(5): 1185-1190.
[8]  朱宏伟, 李貅, 张军等. 瞬变电磁法三维拟地震成像信息提取技术. 地球物理学进展, 2010, 25(5): 1648-1656. Zhu H W, Li X, Zhang J, et al. Information collecting technology in 3-D pseudo-seismic imaging of transient electromagnetics. Progress in Geophysics (in Chinese), 2010, 25(5): 1648-1656.
[9]  刘银爱. 合成孔径瞬变电磁偏移成像技术研究. 西安: 长安大学地球探测与信息技术, 2010. Liu Y A. A research on TEM imaging method based on synthetic-aperture technology (in Chinese). Xi''an: Chang''an University,2010.
[10]  王彦飞. 反演问题的计算方法及其应用. 北京: 高等教育出版社, 2007. Wang Y F. Computational Methods for Inverse Problems and Their Applications (in Chinese). Beijing: Higher Education Press, 2007.
[11]  王彦飞, 斯捷潘诺娃 I E, 提塔连科 V N等. 地球物理数值反演问题. 北京: 高等教育出版社, 2011. Wang Y F, Stefan Nova I E, Titalianke V N, et al. Inverse Problems in Geophysics and Solution Methods (in Chinese). Beijing: Advanced Education Press, 2011.
[12]  沈梅芳. 瞬变电磁的虚拟波场偏移成像研究. 西安:长安大学,2006. Shen M F. The fictitious wavefield migration imaging of transient electromagnetic method (in Chinese). Xi''an: Chang''an University,2006.
[13]  Kunetz G. Processing and interpretation of Magnetotelluric soundings. Geophysics, 1972, 37(6): 1005-1021.
[14]  Lee K H, Liu G, Morrison H F. A new approach to modeling the electromagnetic response of conductive media. Geophysics, 1989, 54(9): 1180-1192.
[15]  Lee S, McMechan G A, Aiken C L V. Phase-field imaging: The electromagnetic equivalent of seismic migration. Geophysics, 1987, 52(5): 678-693.
[16]  Bai Z, Zhang S. A regularized conjugate gradient method for symmetric positive definite system of linear equations. Journal of Computational Mathematics, 2002, 20(4): 437-448.
[17]  周翠荣. 改进的正则化共轭梯度法. 杭州: 电子科技大学, 2010. Zhou C R. The improved regularized conjugate gradient method (in Chinese). Hangzhou: University of Electronic Science and Technology, 2010.
[18]  胡家赣. 线性代数方程组的迭代解法. 北京: 科学出版社, 1991. Hu J G. Linear Algebraic Equations Iterative Method (in Chinese). Beijing: Science Press, 1991.
[19]  赵俊华. 改进的SAOR预条件共轭梯度法. 太原: 太原理工大学, 2005. Zhao J H. Modified SAOR preconditioned conjugate Gradient method (in Chinese). Taiyuan: Taiyuan University of Technology, 2005.
[20]  Zhdanov M S, Ellisz R, Mukherjee S. Three-dimensional regularized focusing inversion of gravity gradient tensor component data. Geophysics, 2004, 69(4): 925-937.
[21]  Zhdanov M S, Tolstaya E. A novel approach to the model appraisal and resolution analysis of regularized geophysical inversion. Geophysics, 2006, 71(6): R79-R90.
[22]  Tong X Z, Liu J X, Xu L H. Damped gauss-newton optimization algorithm for tow-dimensional magnetotelluric regularization inversion. ICIEC, 2009, 12
[23]  刘小军, 王家林, 吴健生. 二维大地电磁正则化共轭梯度法反演算法. 上海地质, 2007, (1): 71-74. Liu X J, Wang J L, Wu J S. Inversion algorithm of 2-D magnetotelluric data using regularized conjugate gradient method. Shanghai Geological (in Chinese), 2007, (1): 71-74.
[24]  戴亦军, 童孝忠, 张连伟等. 利用一维正则化反演进行大地电磁测深数据拟二维反演解释. 物化探计算技术, 2012, 34(1): 33-38. Dai Y J, Tong X Z, Zhang L W, et al. Pseudo-2D inversion interpretation for magnetotelluric data using 1D regularization inversion method. Computing Techniques for Geophysical and Geochemical Exploration (in Chinese), 2012, 34(1): 33-38.
[25]  张军, 李貅, 赵莹等. 瞬变电磁虚拟波场高分辨成像技术研究. 地球物理学进展, 2011, 26(3): 1077-1084. Zhang J, Li X, Zhao Y, et al. A technology research of high-resolation imaging for the transient electromagnetic pseudo wave field. Progress in Geophysics (in Chinese), 2011, 26(3): 1077-1084.
[26]  李貅. 瞬变电磁测深的理论与应用. 西安: 陕西科学技术出版社, 2002. Li X. Transient Electromagnetic Sounding Theory and Application (in Chinese). Xi''an. Shaanxi Science and Technology Press, 2002.
[27]  Zhdanov M S, Dmitriev V I, Fang S, et al. Quasi-analytical approximations and series in electromagnetic modeling. Geophysics, 2000, 65(6): 1746-1757.
[28]  Zhdanov M S, Portniaguine O. Time-domain electromagnetic migration in the solution of inverse problems. Geophysics, 1997, 131(2): 293-309.
[29]  Zhdanov M S, Traynint P, Booker J R. Underground imaging by frequency-domain electromagnetic migration. Geophysics, 1996, 61(3): 666-682.
[30]  Lavrent''ev M M, Rornanov V G, Shishatskii S P. Ill-posed problems of mathematical physics and analysis (in Russian). Providence RI: American Mathematical Society, 1986.
[31]  陈本池, 李金铭, 周凤桐. 瞬变电磁场拟波动方程偏移成像. 石油地球物理勘探, 1999, 34(5): 546-554. Chen B C, Li J M, Zhou F T. Quasi wave equation migration of transient electromagnetic field. OGP (in Chinese), 1999, 34(5): 546-554.
[32]  陈本池, 周凤桐, 李金铭. 瞬变电磁场的波场变换研究. 物探与化探, 1999, 23(3): 195-201. Chen B C, Zhou F T, Li J M. The wavefield transformation study of transient electromagnetic field. Geophysical and Geochemical Exploration (in Chinese), 1999, 23(3): 195-201.
[33]  Xue G Q, Yan Y J, Li X. Control of the waveform dispersion effect and applications in a TEM imaging technique for identifying underground objects. Journal of Geophysics and Engineering, 2011, 8(2): 195-201, doi: 10.1088/1742-2132/8/2/007.
[34]  刘继军. 不适定问题的正则化方法及应用. 北京: 科学出版社, 2005. Liu J J. Regularization Methods and Applications (in Chinese). Beijing: Science Press, 2005
[35]  何小祥, 刘梅林. SSOR 预处理技术在二维电磁特性TDFEM 分析中的应用. 南京航空航天大学学报, 2006, 38(6): 670-673. He X X, Liu M L. Application of SSOR preconditioning technique in TDFEM for 2-D electromagnetic analysis. Journal of Nanjing University of Aeronautics & Astronautics (in Chinese), 2006, 38(6): 670-673.
[36]  韦志辉, 周荣富. SSOR方法的数值稳定性. 东南大学学报 (自然科学版), 1990, 20(3): 108-113. Wei Z H, Zhou F R. Numerical stability of SSOR method. Journal of Southeast University (in Chinese), 1990, 20(3): 108-113.
[37]  Wang Y F. A restarted conjugate gradient method for ill-posed problems. Acta Mathematicae Applicatae Sinica (English Series), 2003, 19(1): 31-40.
[38]  陈晓斌, 赵国泽, 汤吉等. 大地电磁自适应正则化反演算法. 地球物理学报, 2005, 48(4): 937-946. Chen X B, Zhao G Z, Tang J, et al. An adaptive regularized inversion algorithm for magnetotelluric data. Chinese J. Geophys. (in Chinese), 2005, 48(4): 937-946.
[39]  王家映, Oldenburg D, Levy S. 大地电磁测深的拟地震解释法. 石油地球物理勘探, 1985, 20(1): 66-79. Wang J Y, Oldenburg D, Levy S. The magnetotelluric interpretation simuiating seismic method. Oil Geophysical Prospecting (in Chinese), 1985, 20(1): 66-79.
[40]  左海燕, 王家映, 方胜. 关于大地电磁的平均速度问题. 石油物探, 1986, 25(1): 84-97. Zuo H Y, Wang J Y, Fang S. On magnetotelluric average velocity. Geophysical Prosecting for Petroleum (in Chinese), 1986, 25(1): 84-97.
[41]  王家映. 大地电磁拟地震解释法. 北京: 石油工业出版社, 1995. Wang J Y. Magnetotelluric Sounding Interpretation Method (in Chinese). Beijing: Petroleum Industry Press, 1995.
[42]  薛国强, 李貅, 宋建平等. 回线源瞬变电磁成像的理论分析及数值计算. 地球物理学报, 2004, 47(2): 338-343. Xue G Q, Li X, Song J P, et al. Theoretical analysis and numerical calculation of loop-source transient electromagnetic imaging. Chinese J. Geophys. (in Chinese), 2004, 47(2): 338-343.
[43]  郭文波. 瞬变电磁拟地震解释法研究. 西安: 长安大学, 2000. Guo W B. Transient electromagnetic pseudo-seismic interpretation method research (in Chinese). Xi''an: Chang''an University, 2000.
[44]  牛之琏. 时间域电磁法原理. 长沙: 中南大学出版社, 2007. Niu Z L. Principle of Time Domain Electromagnetic Method (in Chinese). Changsha: Central South University Press, 2007.
[45]  薛国强, 李貅, 底青云. 瞬变电磁法正反演问题研究进展. 地球物理学进展, 2008, 23(4): 1165-1172. Xue G Q, Li X, Di Q Y. Research progress in TEM forward modeling and inversion calculation. Progress in Geophysics (in Chinese), 2008, 23(4): 1165-1172.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133