全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于马尔科夫随机场的岩性识别方法

DOI: 10.6038/cjg20130430, PP. 1360-1368

Keywords: 马尔科夫随机场,邻域系统,岩性识别,Bayesian框架

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过地震反演数据识别岩性,是地震反演的一项基本任务.由于不同岩性的弹性参数范围常常存在一定程度的重叠,所以给岩性识别带来了很大的困难.本文以叠前反演的弹性参数为基础,通过马尔科夫随机场(MarkovRandomField简写为MRF)建立先验模型,按照解释好的测井资料,对不同岩性的弹性参数进行统计,得到计算所需的参数,在贝叶斯(Bayesian)框架下建立岩性分类的目标函数,达到岩性识别的目的.通过马尔科夫随机场建立先验模型,能够建立相邻点间的相互作用关系,得到横向上延续的岩性剖面.本文使用一个楔形模型和MarmousiⅡ模型对该方法进行了测试,结果表明,该方法有效可行.同时,本文通过加入误差的方法,检验了反演存在误差对识别结果的影响.

References

[1]  Ostrander W J. Plane-wave reflection coefficients for gas sands at nonnormal angles of incidence. Geophysics, 1984, 49(10): 1637-1648.
[2]  Mukerji T, Avseth T, Mavko G, et al. Statistical rock physics: Combining rock physics, information theory, and geostatistics to reduce uncertainty in seismic reservoir characterization. The Leading Edge, 2001, 20(3): 313-319.
[3]  Eidsvik J, Avseth P, Omre H, et al. Stochastic reservoir characterization using prestack seismic data. Geophysics, 2004, 69(4): 978-993.
[4]  Bachrach R. Joint estimation of porosity and saturation using stochastic rock-physics modeling. Geophysics, 2006, 71(5): O53-O63.
[5]  Larsen A L, Ulvmoen M, Omre H, et al. Bayesian lithology/fluid prediction and simulation on the basis of a Markov-chain prior model. Geophysics, 2006, 71(5): R69-R78.
[6]  Buland A, Kolbjrnsen O, Hauge R, et al. Bayesian lithology and fluid prediction from seismic prestack data. Geophysics, 2008, 73(3): C13-C21.
[7]  Eidsvik J, Omre H, Mukerji T, et al. Seismic reservoir prediction using Bayesian integration of rock physics and markov random fields: A North Sea example. The Leading Edge, 2002, 21(3): 290-294.
[8]  Elfeki A, Dekking M. A Markov chain model for subsurface characterization: Theory and applications. Mathematical Geology, 2001, 33(5): 569-589.
[9]  Carle S F, Fogg G E. Modeling spatial variability with one and multidimensional continuous-Lag Markov chains. Mathematical Geology, 1997, 29(7): 891-918.
[10]  何又雄, 姚姚. 基于参考道的岩性识别与岩性剖面非线性反演. 石油勘探与开发, 2005, 32(3): 61-63. He Y X, Yao Y. Lithological profile non-linear inversion by reference trace-based lithological identification. Petroleum Exploration and Development (in Chinese), 2005, 32(3): 61-63.
[11]  李国福. 多参数储层预测及流体识别方法研究. 成都: 成都理工大学, 2011. Li G F. Multi-parameter reservoir prediction and fluid identification method research (in Chinese). Chengdu: Chengdu University of Technology, 2011.
[12]  Gunning J, Glinsky M E. Detection of reservoir quality using Bayesian seismic inversion. Geophysics, 2007, 72(3): R37-R49.
[13]  Spikes K, Mukerji T, Dvorkin J, et al. Probabilistic seismic inversion based on rock-physics models. Geophysics, 2007, 72(5): R87-R97.
[14]  Ulvmoen M, More H. Improved resolution in Bayesian lithology/fluid inversion from prestack seismic data and well observations: Part 1-Methodology. Geophysics, 2010, 75(2): R21-R35.
[15]  Ulvmoen M, More H, Buland A. Improved resolution in Bayesian lithology/fluid inversion from prestack seismic data and well observations: Part 2-Real case study. Geophysics, 2010, 75(2): B73-B82.
[16]  Ulvmoen M, Hammer H. Bayesian lithology/fluid inversion-comparison of two algorithms. Computational Geosciences, 2010, 14(2): 357-367.
[17]  邓继新, 王尚旭. 基于统计岩石物理的含气储层饱和度与孔隙度联合反演. 石油天然气学报, 2009, 31(1): 48-53. Deng J X, Wang S X. Joint inversion of saturation and porosity in gas reservoirs based on statistical rock physics. Journal of Oil and Gas Technology (in Chinese), 2009, 31(1): 48-53.
[18]  胡华锋. 基于叠前道集的储层参数反演方法研究. 青岛: 中国石油大学(华东), 2009. Hu H F. The Study of Petrophysical-Properties Inversion Base on Pre-stack Seismic Data (in Chinese). Qingdao: China University of Petroleum, 2009.
[19]  Weissmann G S, Fogg G E. Multi-scale alluvial fan heterogeneity modeled with transition probability geostatistics in a sequence stratigraphic framework. Journal of Hydrology, 1999, 226(1-2): 48-56.
[20]  Norberg T, Rosén L, Baran A, et al. On modeling discrete geological structures as Markov random fields. Mathematical Geology, 2002, 34(1): 63-77.
[21]  李旭超, 朱善安. 图像分割中的马尔可夫随机场方法综述. 中国图像图形学报, 2007, 12(5): 789-798. Li X C, Zhu S A. A survey of the Markov random field method for image segmentation. Journal of Image and Graphics (in Chinese), 2007, 12(5): 789-798.
[22]  Yuan S Y, Wang S X, Li G F. Random noise reduction using Bayesian inversion. Journal of Geophysics and Engineering, 2012, 9(1): 60-68.
[23]  Pérez P. Markov random fields and images. CWI Quarterly, 1998, 11(4): 413-437.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133