全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于储层砂岩微观孔隙结构特征的弹性波频散响应分析

DOI: 10.6038/cjg20150931, PP. 3389-3400

Keywords: 储层砂岩,孔隙结构,喷射流作用,速度频散

Full-Text   Cite this paper   Add to My Lib

Abstract:

储层砂岩微观孔隙结构特征不仅影响干燥岩石的弹性波传播速度,也决定了岩石介质中与流体流动相关的速度频散与衰减作用.依据储层砂岩微观结构特征及速度随有效压力变化的非线性特征,将其孔隙体系理想化为不同形状的硬孔隙(纵横比α>0.01)与软孔隙(纵横比α<0.01)的组合(双孔隙结构).基于孔弹性理论,给出软孔隙最小初始纵横比值(一定压力下所有未闭合软孔隙在零压力时的纵横比最小值)的解析表达式,并在此基础上利用岩石速度-压力实验观测结果给出求取介质中两类孔隙纵横比及其含量分布特征的方法.通过逐步迭代加入软孔隙的方法对基于特征纵横比的"喷射流"(squirtfluid)模型进行了扩展,以考虑复杂孔隙分布特征对岩石喷射流作用的影响及其可能引起的速度频散特征.相较于典型的喷射流作用速度频散模式,对于岩石中软孔隙纵横比及其对应含量在较宽的范围呈谱分布的一般情况,其速度频散曲线不存在明显的低频段和中间频段,速度随频率的增大呈递增趋势直至高频极限.这说明即使在地震频段,微观尺度下的喷射流作用仍起一定作用,同样会造成流体饱和岩石介质的地震速度与Gassmann方程预测结果有不可忽略的差异.本文是对现有喷射流模型的重要补充,也为利用实验数据建立不同频段间岩石弹性波传播速度的可能联系提供了理论依据.

References

[1]  Chen Y, Huang T F. 2001. Rock Physics (in Chinese). Beijing: Peking University Press.
[2]  Cheng Y F, Yang D H, Yang H Z. 2002. Biot/squirt model in viscoelastic porous media.Chinese Physics Letters, 19(3):445-448.
[3]  David E C, Zimmerman R W. 2012. Pore structure model for elastic wave velocities in fluid-saturated sandstones. J. Geophys. Res.,117(B7): B07210.
[4]  Deng J X, Wang S X, Du W. 2012. A study of the influence of mesoscopic pore fluid flow on the propagation properties of compressional wave—a case of periodic layered porous media. Chinese J. Goephys.(in Chinese), 55(8): 2716-2727, doi: 10.6038/j.issn.0001-5733.2012.08.024.
[5]  Dvorkin J, Mavko G, Nur A. 1995. Squirt flow in fully saturated rocks.Geophysics, 60(1): 97-107.
[6]  Dvorkin J, Nur A. 1993.Dynamic poroelasticity: a unified model with the Squirt and the Biot mechanisms. Geophysics, 58(4): 524-533.
[7]  Eshelby J D. 1957.The determination of the elastic field of an ellipsoidal inclusion, and related problems.Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 241(1226): 376-396.
[8]  Gurevich B, MakarynskaD, de Paula O B, et al. 2010.A simple model for squirt-flow dispersion and attenuation in fluid-saturated granular rocks.Geophysics, 75(6): N109-N120.
[9]  Hudson J A, Liu E, Crampin S. 1996.The mechanical properties of materials with interconnected cracks and pores. Geophysical Journal International, 124(1): 105-112.
[10]  Jakobsen M, Chapman M. 2009.Unified theory of global flow and squirt flow in cracked porous media.Geophysics, 74(2): WA65-WA76.
[11]  Jakobsen M, Johansen T A, McCann C. 2003.The acoustic signature of fluid flow in complex porous media.Journal of Applied Geophysics, 54(3-4): 219-246.
[12]  Kachanov M, TsukrovI, Shafiro B. 1994. Effective moduli of solids with cavities of various shapes.Applied Mechanics Reviews, 47(1S): S151-S174.
[13]  Mavko G, Jizba A. 1991.Estimating grain-scale fluid effects on velocity dispersion in rocks.Geophysics, 56(12): 1940-1949.
[14]  Mori T, Tanaka K. 1973.Average stress in matrix and average elastic energy of materials with misfitting inclusions.ActaMater.,21(5): 571-574.
[15]  Murphy W F, Winkler K W, Kleinberg R L. 1986. Acoustic relaxation in sedimentary rocks: Dependence on grain contacts and fluid saturation. Geophysics, 51(3): 757-766.
[16]  Nie J X, Ba J, Yang D H, et al. 2012.BISQ model based on a Kelvin-Voigt viscoelastic frame in a partially saturated porous medium.Applied Geophysics, 9(2): 213-222.
[17]  Nie J X, Yang D H. 2008. Viscoelastic BISQ model for low-permeability sandstone with clay.Chinese Physics Letters, 25(8):3079-3082.
[18]  Norris A N. 1985.A differential scheme for the effective moduli of composites.Mechanics of Materials,4(1): 1-16.
[19]  O''Connell R J, Budiansky B. 1974.Seismic velocities in dry and saturated cracked solids.Journal of Geophysical Research,79: 5412-5426.
[20]  Pride S R, Berryman J G. 2003. Linear dynamics of double-porosity dual-permeability materials. I. Governing equations and acoustic attenuation.Physical Review E, 68(3): 036603.
[21]  Pride S R, Berryman J G, Harris J M. 2004.Seismic attenuation due to wave-induced flow.J. Geophys. Res., 109(B1): B01201.
[22]  Shapiro S A. 2003.Elastic piezosensitivity of porous and fractured rocks.Geophysics, 68(2): 482-486.
[23]  Tang X M. 2011. A unified theory for elastic wave propagation through porous media containing cracks—An extension of Biot''sporoelastic wave theory. Sci. China Earth Sci., 54(9): 1441-1452.
[24]  Yang D H, Zhang ZJ. 2002.Poroelastic wave equation including the Biot/squirt mechanism and the solid/fluid coupling anisotropy.Wave Motion, 35(3): 223-245.
[25]  Yang L, Yang D H, Nie J X. 2014.Wave dispersion and attenuation in viscoelastic isotropic media containing multiphase flow and its application.Science China-Physics Mechanics & Astronomy, 57(6): 1068-1077.
[26]  Zimmerman R W. 1991. Compressibility of Sandstones. Amsterdam: Elsevier.
[27]  Zimmerman R W. 1986.Compressibility of two-dimensional cavities of various shapes.Journal of Applied Mechanics, 53(3): 500-504.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133