全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多相离散随机介质模型及其探地雷达波场特征研究

DOI: 10.6038/cjg20150813, PP. 2779-2791

Keywords: 随机介质,多相离散,特征参数,重构,波场特征

Full-Text   Cite this paper   Add to My Lib

Abstract:

沥青混凝土是由骨料、沥青胶浆、空气按照一定的体积百分比混合而成的多相非匀质混合物,其骨料、沥青胶浆和空气的体积不等、形状各异、介电特性不同、空间位置随机分布,具有明显的多相、离散、随机介质特征.本文基于随机介质模型理论,(1)测量与统计了介电常数在典型沥青混凝土芯样空间上的随机分布统计特征;(2)估算了沥青混凝土介质的自相关函数及其特征参数(自相关长度、自相关角度等),确定其随机介质类型;(3)提出了量化约束下的多相离散随机介质建模算法,以混合型椭圆自相关函数为基础,构建了不同粗糙度因子的多相离散随机介质模型;(4)构建了不同空隙率的多相离散随机介质模型,正演模拟与对比分析了探地雷达波在均匀介质、连续型随机介质和多相离散随机介质中的传播特征.结果表明:多相离散随机介质模型不仅描述了沥青混凝土的多相、离散与空间随机分布统计特征,而且进一步描述了其各组成物质体积百分比,能更全面、准确地描述沥青混凝土的介质特征,同时也为描述其他类似材料或介质提供了新的方法和途径;在多相离散随机介质模型中,探地雷达波散射强烈,随机、无序传播的散射波相互叠加干涉,形成了明显的随机扰动和"噪声",致使异常体反射波扭曲变形、不连续,降低了探地雷达回波的信噪比和分辨率.研究探地雷达波的随机扰动特征与多相离散随机介质模型参数之间的关系,将为定量评价多相离散随机介质的属性参数提供参考和帮助.

References

[1]  Guo N C, Wang S X, Dong C H, et al. 2012. Description of small scale inhomogeneities in seismic prospecting and long-wavelength theory. Chinese J. Geophys.(in Chinese), 55(7):2385-2401, doi:10.6038/j.issn.0001-5733.2012.07.023.
[2]  Huang Z L, Zhang J Z. 2013. An inversion method for geometric and electric parameters of layered media using spectrum of GPR signal. Chinese J. Geophys.(in Chinese), 56(4):1381-1391, doi:10.6038/cjg20130432.
[3]  Ikelle L T, Yung S K, Daube F. 1993. 2-D random media with ellipsoidal autocorrelation functions. Geophysics, 58(9):1359-1372, doi:10.1190/1.1443518.
[4]  Jiang Z M, Zeng Z F, Li J, et al. 2013. Simulation and analysis of GPR signal based on stochastic media model with an ellipsoidal autocorrelation function. Journal of Applied Geophysics, 99:91-97, doi:10.1016/j.jappgeo.2013.08.005.
[5]  Klime L. 2002. Correlation functions of random media. Pure and Applied Geophysics, 159(7-8):1811-1831, doi:10.1007/s00024-002-8710-2.
[6]  Liu Y X, Xu T, Zhao B, et al. 2007. Seismic sounding of anisotropic self-similar self-organized medium. Chinese J. Geophys.(in Chinese), 50(1):221-232.
[7]  Lu C M, Qin Z, Zhu H L, et al. 2007. Practical methods for detection of concealed cracks in highway pavement using ground penetrating radar data. Chinese J. Geophys.(in Chinese), 50(5):1558-1568.
[8]  Maierhofer C. 2003. Nondestructive evaluation of concrete infrastructure with ground penetrating radar. Journal of Materials in Civil Engineering, 15(3):287-297, doi:10.1061/(ASCE)0899-1561(2003)15:3(287).
[9]  Saarenketo T, Scullion T. 2000. Road evaluation with ground penetrating radar. Journal of Applied Geophysics, 43(2-4):119-138, doi:10.1016/S0926-9851(99)00052-X.
[10]  Wu F S. 2009. A study of ground penetrating radar methods and techniques in concrete detection(in Chinese). Changchun:Jilin University.
[11]  Wu J J, Liu S X, Dong H, et al. 2011. Permittivity measurement for rock and ore samples by open-ended coaxial method. Chinese J. Geophys.(in Chinese), 54(2):457-465, doi:10.3969/j.issn.0001-5733.2011.02.024.
[12]  Xi X, Yao Y. 2002. Simulations of random medium model and intermixed random medium. Earth Science-Journal of China University of Geosciences(in Chinese), 27(1):67-71.
[13]  Xi X, Yao Y. 2005. Non-stationary random medium model. Oil Geophysical Prospecting(in Chinese), 40(1):71-75.
[14]  Xu T, Ning J R, Liu C C, et al. 2007. Influence of the self-organization of the earth interior upon the traveltime and amplitude of seismic wave. Chinese J. Geophys.(in Chinese), 50(4):1174-1181, doi:10.3321/j.issn:0001-5733.2007.04.026.
[15]  Zhang Y L, Sundararajan S. 2006. Generating random surfaces with desired autocorrelation length. Applied Physics Letters, 88(14):141903, doi:10.1063/1.2191882.
[16]  Zhao Y Y, Gu H M, Wang Y, et al. 2013. Research on constructing clastic reservoir seismic geologic model under no well condition. Chinese J. Geophys.(in Chinese), 56(6):2055-2064, doi:10.6038/cjg20130626.
[17]  Zhong Y H, Li Q, Chen Z P, et al. 2007. A study on application of GPR segregation detection of asphalt concrete pavement. Highway(in Chinese),(4):117-123.
[18]  Amin P, Subbalakshmi K P. 2007. Detecting hidden messages using image power spectrum.//ICIP 2007 Conference and Exhibition Extended Abstracts, 1:I-421-I-424.
[19]  Alani A M, Aboutalebi M, Kilic G. 2013. Applications of ground penetrating radar(GPR)in bridge deck monitoring and assessment. Journal of Applied Geophysics, 97:45-54, doi:10.1016/j.jappgeo.2013.04.009.
[20]  Balboa R M, Grzywacz N M. 2003. Power spectra and distribution of contrasts of natural images from different habitats. Vision Research, 43(24):2527-2537, doi:10.1016/S0042-6989(03)00471-1.
[21]  Birchak J R, Gardner C G, Hipp J E, et al. 1974. High dielectric constant microwave probes for sensing soil moisture. Proceedings of the IEEE, 62(1):93-98, doi:10.1109/PROC.1974.9388.
[22]  Cai J C, Yu B M. 2011. A discussion of the effect of tortuosity on the capillary imbibition in porous media. Transport in Porous Media, 89(2):251-263.
[23]  Cai Y C. 2008. Inverse analysis of dielectric properties for layered inhomogeneous media(in Chinese). Dalian:Dalian University of Technology.
[24]  Dai Q W, Wang H H. 2013. Element free method forward modeling of GPR based on random medium model. The Chinese Journal of Nonferrous Metals(in Chinese), 23(9):2436-2443.
[25]  Ding L, Han B, Liu R Z, et al. 2012. Inversion imaging method for concrete non-destructive testing based on GPR. Chinese J. Geophys.(in Chinese), 55(1):317-326, doi:10.6038/j.issn.0001-5733.2012.01.032.
[26]  Ergintav S, Canitez N. 1997. Modeling of multi-scale media in discrete form. Journal of Seismic Exploration, 6(1):77-96.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133