全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于初至波走时层析成像的Tikhonov正则化与梯度优化算法

DOI: 10.6038/cjg20150423, PP. 1367-1377

Keywords: 初至波走时层析成像,正则化,梯度下降法,射线追踪

Full-Text   Cite this paper   Add to My Lib

Abstract:

初至波走时层析成像是利用地震初至波走时和其传播的射线路径来反演地下介质速度的技术.该问题本质上是一个不适定问题,需要使用正则化方法并辅之以适当的最优化技巧.本文从数值优化的角度介绍了初至波走时层析成像的反演原理,建立了Tikhonov正则化层析成像反演模型并提出求解极小化问题的加权修正步长的梯度下降算法.该方法可以从速度模型的可行域中迭代找到一个最优解.数值试验表明,该方法是可行和有应用前景的.

References

[1]  Bios P, Porte M L, Lavergne M, et al. 1972. Well-to-well seismic measurements. Geophysics, 37(3):471-480.
[2]  Bishop T N, Bube K P, Cutler R T, et al. 1985. Tomographic determination of velocity and depth in laterally varying media. Geophysics, 50(6):903-923.
[3]  Chang X, Lu M X, Liu Y K. 1999. Error analysis and appraisals for three general solutions in seismic tomography. Chinese Journal of Geophysics (in Chinese), 42(5):695-701.
[4]  Chang X, Liu Y K, Wang H, et al. 2002. 3-D tomographic static correction. Geophysics, 67(4):1275-1285.
[5]  Cheng G, Ma Z T, Geng J H, et al. 2002. A review on the growth of seismic tomography. Progress in Exploration Geophysics (in Chinese), 25(3):6-12.
[6]  Cheng G. 2004. Theory and applications of seismic reflection traveltime tomography [Ph. D. thesis] (in Chinese). Shanhai:Tongji University.
[7]  Clapp R G, Biondi B, Claerbout J F. 2004. Incorporating geologic information into reflection tomography. Geophysics, 69(2):533-546.
[8]  Daily W D. 1984. Underground oil-shale retort monitoring using geotomography. Geophysics, 49(10):1701-1711.
[9]  Dines K A, Lytle R J. 1979. Computerized geophysical tomography. Proc. IEEE, 67(7):1065-1073.
[10]  Dyer B C, Worthington M H. 1988. Seismic reflection tomography:a case study. First Break, 6:354-366.
[11]  Fomel S. 2007. Shaping regularization in geophysical estimation problems. Geophysics, 72(2):R29-R36.
[12]  Guo J R, Feng X, Wang J X, et al. 2008. Study of shortest path method of ray tracing algorithm. Journal of Jilin University (Earth Science Edition) (in Chinese), 38(S1):72-75.
[13]  Han X L, Yang C C, Ma S H, et al. 2008. Static of tomographic inversion by first breaks in complex areas. Progress in Geophysics (in Chinese), 23(2):475-483.
[14]  He L, Zhang W, Zhang J. 2013. 3D wave-ray traveltime tomography for near surface imaging. 83rd SEG Annual Conference, Houston, Texas, 1749-1753.
[15]  Jing Y H. 2009. Seismic first break travel-time tomography and its application in near-surface velocity model building[Ph. D. thesis] (in Chinese). Xi''an:Chang''an University.
[16]  Li L M, Luo S X, Zhao B. 2000. Tomographic inversion of first break in surface model. Oil Geophysical Prospecting (in Chinese), 35(5):559-564.
[17]  Liu Y Z, Dong L G, Xia J J. 2007. Regularization methods for first-arrival travel time tomography. Oil Geophysical Prospecting (in Chinese), 42(6):682-698.
[18]  Lu H Y, LiuY K, Chang X. 2013. MSFM based travel times calculation in complex near surface model. Chinese Journal of Geophysics (in Chinese), 56(9):3100-3108, doi:10.6038/cjg20130922
[19]  McMechan G A, Harris J M, Anderson L M. 1987. Cross-hole tomography for strongly variable media with applications to scale model data. Bulletin of the Seismological Society of America, 77(6):1945-1960.
[20]  Wang Y F. 2007. Computational Methods for Inverse Problems and Their Applications (in Chinese). Beijing:Higher Education Press.
[21]  Somerstein S F, Berg M, Chang D, et al. 1984. Radio-frequency geotomography for remotely probing the interior of operating mini and commercial-sized oil-shale retorts. Geophysics, 49(9):1288-1300.
[22]  Wang B, Braile L W. 1995. Effective approaches to handling non-uniform data coverage problem for wide-aperture refraction/reflection profiling. The 65th Ann. International Meeting, SEG, Expanded abstracts, 659-662.
[23]  Wang W, Han B, Tang J P. 2013. Regularization method with sparsity constraints for seismic waveform inversion. Chinese Journal of Geophysics (in Chinese), 56(1):289-297, doi:10.6038/cjg20130130
[24]  Wang Y F, Yagola A G, Yang C C. 2012. Optimization and Regularization for Computational Inverse Problems and Applications. Berlin:Springer.
[25]  Wang Y F, Stepanova I E, Titarenko V N, et al. 2011. Inverse Problems in Geophysics and Solution Methods (in Chinese). Beijing:Higher Education Press.
[26]  White D J. 1991. Two-dimensional seismic refraction tomography. Geophysical Journal, 72(2):223-245.
[27]  Woodward M J, Nichols D, Zdraveva O, et al. 2008. A decade of tomography. Geophysics, 73(5):VE5-VE11.
[28]  Xiao T Y, Yu S G, Wang Y F. 2003. Numerical Methods for the Solution of Inverse Problems (in Chinese). Beijing:Science Press.
[29]  Yang W C, Li Y M. 1993. Applied Seismic Tomography (in Chinese). Beijing:Geological Publishing House,
[30]  Yuan Y X. 1993. Numerical Methods for Nonlinear Programming (in Chinese). Shanghai:Shanghai Science and Technology Publisher.
[31]  Zhang J, Toksoz M N. 1998. Nonlinear refraction traveltime tomography. Geophysics, 63(5):1726-1737.
[32]  Zhang J Z. 2004. First break tomography for near-surface layers in seismic exploration. Journal of Xiamen University (Natural Science) (in Chinese), 43(1):63-66, doi:10.3321/j.issn:0438-0479.2004.01.016.
[33]  Zhang P, Liu H, Li Y M. 2000. The situation and progress of ray tracing method research. Progress in Geophysics (in Chinese), 15(1):36-45, doi:10.3969/j.issn.1004-2903.2000.01.002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133